Eigenvalues of Fourth-Order Singular Sturm-Liouville Boundary Value Problems

Eigenvalues of Fourth-Order Singular Sturm-Liouville Boundary Value Problems

Year:    2020

Author:    Lina Zhou, Weihua Jiang, Qiaoluan Li

Journal of Nonlinear Modeling and Analysis, Vol. 2 (2020), Iss. 4 : pp. 485–493

Abstract

In this paper, by using Krasnoselskii's fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:\begin{equation*}\left\{\begin{array}{lll} \frac{1}{p(t)}(p(t)u''')'(t)+ \lambda f(t,u)=0, t\in(0,1), \\ u(0)=u(1)=0, \\ \alpha u''(0)- \beta \lim_{t \rightarrow 0^{+}} p(t)u'''(t)=0, \\ \gamma u''(1)+\delta\lim_{t \rightarrow 1^{-}} p(t)u'''(t)=0, \end{array}\right.\end{equation*} are established, where $\alpha,\beta,\gamma,\delta \geq 0,$ and $~\beta\gamma+\alpha\gamma+\alpha\delta >0$. The function $p$ may be singular at $t=0$ or $1$, and $f$ satisfies Carathéodory condition.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2020.485

Journal of Nonlinear Modeling and Analysis, Vol. 2 (2020), Iss. 4 : pp. 485–493

Published online:    2020-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Sturm-Liouville problems Eigenvalue Krasnoselskii's fixed-point theorem.

Author Details

Lina Zhou

Weihua Jiang

Qiaoluan Li