Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces

Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces

Year:    2023

Author:    Achraf Azanzal, Chakir Allalou, Said Melliani, Adil Abbassi

Journal of Partial Differential Equations, Vol. 36 (2023), Iss. 1 : pp. 1–21

Abstract

In this paper, we study the subcritical dissipative quasi-geostrophic equation. By using the Littlewood Paley theory, Fourier analysis and standard techniques we prove that there exists $v$ a unique global-in-time solution for small initial data belonging to the critical Fourier-Besov-Morrey spaces  $ \mathcal{F} {\mathcal{N}}_{p, \lambda, q}^{3-2 \alpha+\frac{\lambda-2}{p}}$. Moreover, we show the asymptotic behavior of the global solution $v$. i.e., $\|v(t)\|_{ \mathcal{F} {\mathcal{N}}_{p, \lambda, q}^{3-2 \alpha+\frac{\lambda-2}{p}}}$ decays to zero as time goes to infinity.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v36.n1.1

Journal of Partial Differential Equations, Vol. 36 (2023), Iss. 1 : pp. 1–21

Published online:    2023-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    2D quasi-geostrophic equation

Author Details

Achraf Azanzal

Chakir Allalou

Said Melliani

Adil Abbassi