Global Integrability for Solutions to Obstacle Problems

Global Integrability for Solutions to Obstacle Problems

Year:    2022

Author:    Yanan Shan, Hongya Gao

Journal of Partial Differential Equations, Vol. 35 (2022), Iss. 4 : pp. 320–330

Abstract

Denote  $$ {\cal K} _{\psi, \theta} (\Omega) =\left\{ v\in W^{1,p} (\Omega) : v\ge \psi, \mbox { a.e. and }  v-\theta \in W_0^{1,p} (\Omega) \right\}, $$ where $\psi$ is any function in $\Omega \subset \mathbb R^N$, $N\ge 2$, with values in $\mathbb R \cup \{\pm \infty\}$ and $\theta $ is a measurable function. This paper deals with global integrability for $u \in {\cal K}_{\psi, \theta}$ such that

$$ \int_\Omega \langle {\cal A} (x,\nabla u), \nabla (w-u) \rangle {\rm d}x \ge \int_\Omega \langle F, \nabla (w-u) \rangle {\rm d}x, \ \ \forall\ w \in {\cal K}_{\psi,\theta} (\Omega), $$ with $|{\cal A} (x,\xi)| \approx |\xi| ^{p-1}$, $1<p<N$. Some global integrability results are obtained.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v35.n4.2

Journal of Partial Differential Equations, Vol. 35 (2022), Iss. 4 : pp. 320–330

Published online:    2022-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Global integrability obstacle problem A-harmonic equation.

Author Details

Yanan Shan

Hongya Gao

  1. Boundedness and higher integrability of minimizers to a class of two-phase free boundary problems under non-standard growth conditions

    Liu, Jiayin

    Zheng, Jun

    AIMS Mathematics, Vol. 9 (2024), Iss. 7 P.18574

    https://doi.org/10.3934/math.2024904 [Citations: 0]