Finite Difference Method for (2+1)-Kuramoto-Sivashinsky Equation

Finite Difference Method for (2+1)-Kuramoto-Sivashinsky Equation

Year:    2018

Author:    Abdelhamid Bezia, Ben Mabrouk Anouar

Journal of Partial Differential Equations, Vol. 31 (2018), Iss. 3 : pp. 193–213

Abstract

This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of second-order equations, and to formulate the fully discretized, implicit time-marched system as a Lyapunov-Sylvester matrix equation. Convergence and stability is examined using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester operators. Some numerical implementations are provided at the end to validate the theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v31.n3.1

Journal of Partial Differential Equations, Vol. 31 (2018), Iss. 3 : pp. 193–213

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Kuramoto-Sivashinsky equation

Author Details

Abdelhamid Bezia

Ben Mabrouk Anouar

  1. On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto–Sivashinsky equation

    Larios, Adam | Yamazaki, Kazuo

    Physica D: Nonlinear Phenomena, Vol. 411 (2020), Iss. P.132560

    https://doi.org/10.1016/j.physd.2020.132560 [Citations: 14]
  2. A Lyapunov-Sylvester numerical method for solving a reverse osmosis model

    Helali, Saloua | Ben Mabrouk, Anouar | Rashad, Mohamed | Ali, Nizar Bel Hadj | Ȧlanazi, Munirah A. | Alsharif, Marwah A. | Al-Ali, Elham M. | Alharbi, Lubna A. | Mustafa, Manahil S.

    AIMS Mathematics, Vol. 9 (2024), Iss. 7 P.17531

    https://doi.org/10.3934/math.2024852 [Citations: 0]
  3. Lyapunov–Sylvester computational method for numerical solutions of a mixed cubic-superlinear Schrödinger system

    Chteoui, Riadh | Aljohani, Abdulrahman F. | Ben Mabrouk, Anouar

    Engineering with Computers, Vol. 38 (2022), Iss. S2 P.1081

    https://doi.org/10.1007/s00366-020-01264-9 [Citations: 2]
  4. Remarks on the Stabilization of Large-Scale Growth in the 2D Kuramoto–Sivashinsky Equation

    Larios, Adam | Martinez, Vincent R.

    Journal of Mathematical Fluid Mechanics, Vol. 26 (2024), Iss. 4

    https://doi.org/10.1007/s00021-024-00890-3 [Citations: 0]