A Remark on Hardy-Trudinger-Moser Inequality

A Remark on Hardy-Trudinger-Moser Inequality

Year:    2018

Author:    Qianjin Luo, Yu Fang

Journal of Partial Differential Equations, Vol. 31 (2018), Iss. 4 : pp. 353–373

Abstract

Let $\mathbb{B}$ be the unit disc in $\mathbb{R}^2$, $\mathscr{H}$ be the completion of $C_0^{\infty}(\mathbb{B})$ under the norm

$$||u||_{\mathscr{H}}=\Big(\int_{\mathbb{B}}|\nabla u|^2\mathrm{d}x-\int_{\mathbb{B}}\frac{u^2}{(1-|x|^2)^2}\mathrm{d}x\Big)^{\frac{1}{2}},\quad \forall u\in C_0^{\infty}(\mathbb{B}).$$

Using blow-up analysis, we prove that for any $\gamma\leqslant 4\pi$, the supremum

$$\begin{align*}\sup_{u\in\mathscr{H},||u||_{1,h}\leqslant 1}\int_{\mathbb{B}}\mathrm{e}^{\gamma u^2}\mathrm{d}x\end{align*}$$

can be attained by some function $u_0\in \mathscr{H}$ with $||u_0||_{1,h}=1$, where $h$ is a decreasingly nonnegative, radially symmetric function, and satisfies a coercive condition. Namely there exists a constant $\delta>0$ satisfying

$$||u||_{1,h}^2=\|u\|_{\mathscr{H}}^2-\int_{\mathbb{B}}hu^2{\rm d}x\geq \delta\|u\|_{\mathscr{H}}^2,\quad\forall \, u\in\mathscr{H}.$$

This extends earlier results of Wang-Ye [1] and Yang-Zhu [2].

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v31.n4.6

Journal of Partial Differential Equations, Vol. 31 (2018), Iss. 4 : pp. 353–373

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Hardy-Trudinger-Moser inequality

Author Details

Qianjin Luo

Yu Fang

  1. Extremals for a Hardy–Trudinger–Moser Inequality with Remainder Terms

    Yin, Kexin

    Bulletin of the Iranian Mathematical Society, Vol. 49 (2023), Iss. 5

    https://doi.org/10.1007/s41980-023-00813-4 [Citations: 1]