Existence and Nonexistence for Semilinear Equations on Exterior Domains

Existence and Nonexistence for Semilinear Equations on Exterior Domains

Year:    2017

Author:    Joseph A. Iaia

Journal of Partial Differential Equations, Vol. 30 (2017), Iss. 4 : pp. 299–316

Abstract

In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u)= 0$ on the exterior of the ball of radius $R>0$ centered at the origin in ${\mathbb R}^{N}$ where $f$ is odd with $f<0$ on $(0, \beta) $, $f>0$ on $(\beta, \delta),$  $f\equiv 0$ for $u> \delta$, and where the function $K(r)$ is assumed to be positive and $K(r)\to 0$ as $r \to \infty.$ The primitive $F(u)  = \int_{0}^{u} f(s) \, {\rm d}s$ has a  ``hilltop'' at $u=\delta$ which allows one to use the shooting method to prove the existence of solutions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v30.n4.2

Journal of Partial Differential Equations, Vol. 30 (2017), Iss. 4 : pp. 299–316

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Semilinear

Author Details

Joseph A. Iaia

  1. Azer Sign-changing radial solutions for a semilinear problem on exterior domains with nonlinear boundary conditions

    Azeroual, Boubker | Zertiti, Abderrahim

    Boletim da Sociedade Paranaense de Matemática, Vol. 42 (2024), Iss. P.1

    https://doi.org/10.5269/bspm.66896 [Citations: 0]
  2. Existence and nonexistence of radial solutions for semilinear equations with bounded nonlinearities on exterior domains

    Iaia, Joseph A.

    Electronic Journal of Differential Equations, Vol. 2020 (2020), Iss. 01-132

    https://doi.org/10.58997/ejde.2020.117 [Citations: 0]
  3. Existence of solutions for semilinear problems on exterior domains

    Iaia, Joseph

    Electronic Journal of Differential Equations, Vol. 2020 (2020), Iss. 01-132 P.34

    https://doi.org/10.58997/ejde.2020.34 [Citations: 4]