Exact Traveling Wave Solutions for Higher Order Nonlinear Schrödinger Equations in Optics by Using the (G'/G, 1/G)-expansion Method
Year: 2015
Author: Elsayed M. E. Zayed, K. A. E. Alurrfi
Journal of Partial Differential Equations, Vol. 28 (2015), Iss. 4 : pp. 332–357
Abstract
The propagation of the optical solitons is usually governed by the nonlinear Schrödinger equations. In this article, the two variable (G'/G, 1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations rediscovered from the traveling waves. Thismethod can be thought of as the generalization of well-known original (G'/G)-expansion method proposed by M. Wang et al. It is shown that the two variable (G'/G, 1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jpde.v28.n4.4
Journal of Partial Differential Equations, Vol. 28 (2015), Iss. 4 : pp. 332–357
Published online: 2015-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
Keywords: The two variable (G'⁄G