A Logarithmically Improved Blow-up Criterion for a Simplified Ericksen-Leslie System Modeling the Liquid Crystal Flows

A Logarithmically Improved Blow-up Criterion for a Simplified Ericksen-Leslie System Modeling the Liquid Crystal Flows

Year:    2015

Author:    Meng Bai, Qiao Liu, Jihong Zhao

Journal of Partial Differential Equations, Vol. 28 (2015), Iss. 4 : pp. 358–369

Abstract

In this paper, we prove a logarithmically improved blow-up criterion in terms of the homogeneous Besov spaces for a simplified 3D Ericksen-Leslie system modeling the hydrodynamic flow of nematic liquid crystal. The result shows that if a local smooth solution (u,d) satisfies $$∫^T_0\frac{||u||^{\frac{2}{1-r}}_{\dot{B}^{-r}{∞,∞}}+||∇ d||²_{L^∞}}{1+1n(e+||u||_H^S+||∇ d||_H^S)}dt‹∞$$ with 0 ≤ r ‹ 1 and s ≥ 3, then the solution (u,d) can be smoothly extended beyond the time T.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v28.n4.5

Journal of Partial Differential Equations, Vol. 28 (2015), Iss. 4 : pp. 358–369

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Ericksen-Leslie system

Author Details

Meng Bai

Qiao Liu

Jihong Zhao