Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in <em>R</em><sup><em>N</em></sup>

Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in <em>R</em><sup><em>N</em></sup>

Year:    2014

Author:    Somayeh Khademloo, Rahelh Mohsenhi

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 1 : pp. 74–94

Abstract

In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of $$-\Delta\upsilon+μ b(z)\upsilon^{p-1}+λ h(z)\upsilon^{q-1}, \qquad\;in\; \mathbb{R}^N.\qquad (0.1)$$ We prove for large enough λ,μ › 0, there exist at least k+1 positive solutions of the this semilinear elliptic equations where 1 ≤ q ‹ 2 ‹ p ‹ 2*|=2N/(N-2) for N ≥ 3.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v27.n1.5

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 1 : pp. 74–94

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Sobolev spaces

Author Details

Somayeh Khademloo

Rahelh Mohsenhi