<em>W</em><sub>0</sub><sup>1,<em>p(x) </em></sup>versus <em>C</em><sup>1</sup> Local Minimizers for a Functional with Critical Growth

<em>W</em><sub>0</sub><sup>1,<em>p(x) </em></sup>versus <em>C</em><sup>1</sup> Local Minimizers for a Functional with Critical Growth

Year:    2014

Author:    K. Saoudi

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 2 : pp. 115–124

Abstract

Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v27.n2.2

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 2 : pp. 115–124

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    p(x)-Laplacian equation

Author Details

K. Saoudi

  1. A partial derivatives approach for estimation of the viscosity Arrhenius temperature in N,N-dimethylformamide + 1,4-dioxane binary fluid mixtures at temperatures from 298.15 K to 318.15 K

    Al-Omair, N. A. | Das, D. | Snoussi, L. | Sinha, B. | Pradhan, R. | Acharjee, K. | Saoudi, K. | Ouerfelli, N.

    Physics and Chemistry of Liquids, Vol. 54 (2016), Iss. 5 P.615

    https://doi.org/10.1080/00319104.2016.1139707 [Citations: 14]
  2. Multiplicity Results for thepx-Laplacian Equation with Singular Nonlinearities and Nonlinear Neumann Boundary Condition

    Saoudi, K. | Kratou, M. | Alsadhan, S.

    International Journal of Differential Equations, Vol. 2016 (2016), Iss. P.1

    https://doi.org/10.1155/2016/3149482 [Citations: 4]
  3. Existence and multiplicity of solutions for a quasilinear equation involving thep(x)-Laplace operator

    Saoudi, K.

    Complex Variables and Elliptic Equations, Vol. 62 (2017), Iss. 3 P.318

    https://doi.org/10.1080/17476933.2016.1219999 [Citations: 6]
  4. Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity

    Saoudi, Kamel | Ghosh, Sekhar | Choudhuri, Debajyoti

    Journal of Mathematical Physics, Vol. 60 (2019), Iss. 10

    https://doi.org/10.1063/1.5107517 [Citations: 23]
  5. On vs. local minimizers for a critical functional related to fractionalp-Laplacian

    Saoudi, K.

    Applicable Analysis, Vol. 96 (2017), Iss. 9 P.1586

    https://doi.org/10.1080/00036811.2017.1307964 [Citations: 5]
  6. A multiplicity results for a singular equation involving thep(x)-Laplace operator

    Saoudi, K. | Ghanmi, A.

    Complex Variables and Elliptic Equations, Vol. 62 (2017), Iss. 5 P.695

    https://doi.org/10.1080/17476933.2016.1238466 [Citations: 37]