Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations

Jacobi Elliptic Numerical Solutions for the Time Fractional Variant Boussinesq Equations

Year:    2014

Author:    Khaled A. Gepreel

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 3 : pp. 189–199

Abstract

The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v27.n3.1

Journal of Partial Differential Equations, Vol. 27 (2014), Iss. 3 : pp. 189–199

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Homotopy perturbation method

Author Details

Khaled A. Gepreel

  1. Extension of Khan’s Homotopy Transformation Method via Optimal Parameter for Differential Difference Equations

    Mohamed, Mohamed S.

    Gepreel, Khaled A.

    Al-Malki, Faisal A.

    Altalhi, Nouf

    Journal of Applied Mathematics, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/813474 [Citations: 0]