A Remark on the Existence of Positive Solution for a Class of (<em>p,q</em>)-Laplacian Nonlinear System with Multiple Parameters and Sign-changing Weight

A Remark on the Existence of Positive Solution for a Class of (<em>p,q</em>)-Laplacian Nonlinear System with Multiple Parameters and Sign-changing Weight

Year:    2013

Author:    S. H. Rasouli

Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 2 : pp. 99–106

Abstract

The paper deal with the existence of positive solution for the following (p,q)-Laplacian nonlinear system \begin{align*} \left\{  \begin{array}{ll} -Δ_pu=a(x)(α_1f(v)+β_1h(u)), & x∈Ω,\\ -Δ_qv=b(x)(α_2g(u)+β_2k(v)),& x∈Ω,\\ u=v=0,& x∈∂Ω, \end{array} \right. \end{align*} where $Δ_p$ denotes the p-Laplacian operator defined by $Δ_{p}z=div(|∇_z|^{p-2}∇z), p>1, α_1, α_2, β_1, β_2$ are positive parameters and Ω is a bounded domain in $R^N(N > 1)$ with smooth boundary ∂Ω. Here a(x) and b(x) are $C^1$ sign-changing functions that maybe negative near the boundary and f, g, h, k are C^1 nondecreasing functions such that $f, g, h, k: [0,∞)→[0,∞); f (s), g(s), h(s), k(s) > 0; s > 0$ and $lim_{n→∞}\frac{f(Mg(x)^{\frac{1}{q-1}}}{x^{p-1}}=0$ for every $M > 0$.  We discuss the existence of positive solution when $f, g, h, k, a(x)$ and $b(x)$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v26.n2.1

Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 2 : pp. 99–106

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    (p

Author Details

S. H. Rasouli