A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space

A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space

Year:    2013

Author:    Yunyan Yang, Xiaobao Zhu

Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 4 : pp. 300–304

Abstract

In this note, we give a new proof of subcritical Trudinger-Moser inequality on $R^n$. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(R^n)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v26.n4.2

Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 4 : pp. 300–304

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords:    Trudinger-Moser inequality

Author Details

Yunyan Yang

Xiaobao Zhu

  1. Planar Schrödinger-Choquard equations with potentials vanishing at infinity: The critical case

    Shen, Liejun | Rădulescu, Vicenţiu D. | Yang, Minbo

    Journal of Differential Equations, Vol. 329 (2022), Iss. P.206

    https://doi.org/10.1016/j.jde.2022.04.040 [Citations: 16]
  2. On a planar Choquard equation involving exponential critical growth

    Carvalho, J. | Medeiros, E. | Ribeiro, B.

    Zeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 6

    https://doi.org/10.1007/s00033-021-01617-4 [Citations: 4]
  3. Multi-bump solutions to Kirchhoff type equations with exponential critical growth in $$\mathbb {R}^2$$

    Zhang, Jian | Zhang, Xinyi

    Zeitschrift für angewandte Mathematik und Physik, Vol. 75 (2024), Iss. 4

    https://doi.org/10.1007/s00033-024-02282-z [Citations: 0]
  4. A sharp Hardy–Sobolev inequality with boundary term and applications

    Carvalho, Jonison L. | Furtado, Marcelo F. | Medeiros, Everaldo S.

    Nonlinear Differential Equations and Applications NoDEA, Vol. 29 (2022), Iss. 1

    https://doi.org/10.1007/s00030-021-00734-3 [Citations: 2]
  5. A weighted Hardy type inequality and its applications

    Abreu, Emerson | Felix, Diego Dias | Medeiros, Everaldo

    Bulletin des Sciences Mathématiques, Vol. 166 (2021), Iss. P.102937

    https://doi.org/10.1016/j.bulsci.2020.102937 [Citations: 3]
  6. Stationary nonlinear Schrödinger equations in $$\mathbb {R}^2$$ R 2 with potentials vanishing at infinity

    do Ó, João Marcos | Sani, Federica | Zhang, Jianjun

    Annali di Matematica Pura ed Applicata (1923 -), Vol. 196 (2017), Iss. 1 P.363

    https://doi.org/10.1007/s10231-016-0576-5 [Citations: 22]
  7. Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials

    do Ó, João Marcos | Gloss, Elisandra | Sani, Federica

    Annali di Matematica Pura ed Applicata (1923 -), Vol. 198 (2019), Iss. 6 P.2093

    https://doi.org/10.1007/s10231-019-00856-7 [Citations: 3]
  8. Embedding theorems for weighted Sobolev spaces in a borderline case and applications

    Carvalho, J. L. | Furtado, M. F. | Medeiros, E. S.

    Annali di Matematica Pura ed Applicata (1923 -), Vol. 203 (2024), Iss. 1 P.345

    https://doi.org/10.1007/s10231-023-01366-3 [Citations: 0]
  9. Trudinger-Moser Embedding on the Hyperbolic Space

    Yang, Yunyan | Zhu, Xiaobao

    Abstract and Applied Analysis, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/908216 [Citations: 0]
  10. Existence and concentration of solutions to Kirchhoff-type equations in ℝ2 with steep potential well vanishing at infinity and exponential critical nonlinearities

    Zhang, Jian | Bao, Xue | Zhang, Jianjun

    Advances in Nonlinear Analysis, Vol. 12 (2023), Iss. 1

    https://doi.org/10.1515/anona-2022-0317 [Citations: 5]
  11. On a weighted Sobolev embedding on the upper half-space in a borderline case

    Abreu, E. A. M. | Medeiros, E. S. | Yang, J.

    Annali di Matematica Pura ed Applicata (1923 -), Vol. 201 (2022), Iss. 6 P.2715

    https://doi.org/10.1007/s10231-022-01217-7 [Citations: 2]
  12. Multi-bump solutions to Kirchhoff type equations in the plane with the steep potential well vanishing at infinity

    Zhang, Jian | Zhang, Xinyi

    Journal of Mathematical Analysis and Applications, Vol. 540 (2024), Iss. 2 P.128669

    https://doi.org/10.1016/j.jmaa.2024.128669 [Citations: 0]
  13. Quasilinear equation with critical exponential growth in the zero mass case

    de Albuquerque, J.C. | Carvalho, J.

    Nonlinear Analysis, Vol. 232 (2023), Iss. P.113286

    https://doi.org/10.1016/j.na.2023.113286 [Citations: 2]