Year: 2013
Author: Yunyan Yang, Xiaobao Zhu
Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 4 : pp. 300–304
Abstract
In this note, we give a new proof of subcritical Trudinger-Moser inequality on $R^n$. All the existing proofs on this inequality are based on the rearrangement argument with respect to functions in the Sobolev space $W^{1,n}(R^n)$. Our method avoids this technique and thus can be used in the Riemannian manifold case and in the entire Heisenberg group.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jpde.v26.n4.2
Journal of Partial Differential Equations, Vol. 26 (2013), Iss. 4 : pp. 300–304
Published online: 2013-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 5
Keywords: Trudinger-Moser inequality
Author Details
-
Planar Schrödinger-Choquard equations with potentials vanishing at infinity: The critical case
Shen, Liejun | Rădulescu, Vicenţiu D. | Yang, MinboJournal of Differential Equations, Vol. 329 (2022), Iss. P.206
https://doi.org/10.1016/j.jde.2022.04.040 [Citations: 16] -
On a planar Choquard equation involving exponential critical growth
Carvalho, J. | Medeiros, E. | Ribeiro, B.Zeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 6
https://doi.org/10.1007/s00033-021-01617-4 [Citations: 4] -
Multi-bump solutions to Kirchhoff type equations with exponential critical growth in $$\mathbb {R}^2$$
Zhang, Jian | Zhang, XinyiZeitschrift für angewandte Mathematik und Physik, Vol. 75 (2024), Iss. 4
https://doi.org/10.1007/s00033-024-02282-z [Citations: 0] -
A sharp Hardy–Sobolev inequality with boundary term and applications
Carvalho, Jonison L. | Furtado, Marcelo F. | Medeiros, Everaldo S.Nonlinear Differential Equations and Applications NoDEA, Vol. 29 (2022), Iss. 1
https://doi.org/10.1007/s00030-021-00734-3 [Citations: 2] -
A weighted Hardy type inequality and its applications
Abreu, Emerson | Felix, Diego Dias | Medeiros, EveraldoBulletin des Sciences Mathématiques, Vol. 166 (2021), Iss. P.102937
https://doi.org/10.1016/j.bulsci.2020.102937 [Citations: 3] -
Stationary nonlinear Schrödinger equations in $$\mathbb {R}^2$$ R 2 with potentials vanishing at infinity
do Ó, João Marcos | Sani, Federica | Zhang, JianjunAnnali di Matematica Pura ed Applicata (1923 -), Vol. 196 (2017), Iss. 1 P.363
https://doi.org/10.1007/s10231-016-0576-5 [Citations: 22] -
Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials
do Ó, João Marcos | Gloss, Elisandra | Sani, FedericaAnnali di Matematica Pura ed Applicata (1923 -), Vol. 198 (2019), Iss. 6 P.2093
https://doi.org/10.1007/s10231-019-00856-7 [Citations: 3] -
Embedding theorems for weighted Sobolev spaces in a borderline case and applications
Carvalho, J. L. | Furtado, M. F. | Medeiros, E. S.Annali di Matematica Pura ed Applicata (1923 -), Vol. 203 (2024), Iss. 1 P.345
https://doi.org/10.1007/s10231-023-01366-3 [Citations: 0] -
Trudinger-Moser Embedding on the Hyperbolic Space
Yang, Yunyan | Zhu, XiaobaoAbstract and Applied Analysis, Vol. 2014 (2014), Iss. P.1
https://doi.org/10.1155/2014/908216 [Citations: 0] -
Existence and concentration of solutions to Kirchhoff-type equations in ℝ2 with steep potential well vanishing at infinity and exponential critical nonlinearities
Zhang, Jian | Bao, Xue | Zhang, JianjunAdvances in Nonlinear Analysis, Vol. 12 (2023), Iss. 1
https://doi.org/10.1515/anona-2022-0317 [Citations: 5] -
On a weighted Sobolev embedding on the upper half-space in a borderline case
Abreu, E. A. M. | Medeiros, E. S. | Yang, J.Annali di Matematica Pura ed Applicata (1923 -), Vol. 201 (2022), Iss. 6 P.2715
https://doi.org/10.1007/s10231-022-01217-7 [Citations: 2] -
Multi-bump solutions to Kirchhoff type equations in the plane with the steep potential well vanishing at infinity
Zhang, Jian | Zhang, XinyiJournal of Mathematical Analysis and Applications, Vol. 540 (2024), Iss. 2 P.128669
https://doi.org/10.1016/j.jmaa.2024.128669 [Citations: 0] -
Quasilinear equation with critical exponential growth in the zero mass case
de Albuquerque, J.C. | Carvalho, J.Nonlinear Analysis, Vol. 232 (2023), Iss. P.113286
https://doi.org/10.1016/j.na.2023.113286 [Citations: 2]