On a Class of Neumann Boundary Value Equations Driven by a (p<sub>1</sub>, , P<sub>n</sub>)-Laplacian Operator

On a Class of Neumann Boundary Value Equations Driven by a (p<sub>1</sub>, , P<sub>n</sub>)-Laplacian Operator

Year:    2012

Author:    S. Shakeri, G. A. Afrouzi, S. Heidarkhani, A. Hadjian, S. Shakeri

Journal of Partial Differential Equations, Vol. 25 (2012), Iss. 1 : pp. 21–31

Abstract

In this paper we prove the existence of an open interval (λ' ,λ") for each λ in the interval a class of Neumann boundary value equations involving the (p_1,..., p_n)- Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v25.n1.2

Journal of Partial Differential Equations, Vol. 25 (2012), Iss. 1 : pp. 21–31

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    (p_1

Author Details

S. Shakeri

G. A. Afrouzi

S. Heidarkhani

A. Hadjian

S. Shakeri