Year: 2012
Author: Liuqing Yang
Journal of Partial Differential Equations, Vol. 25 (2012), Iss. 3 : pp. 199–207
Abstract
In this paper we mainly study the relation between $|A|^2, |H|^2$ and cosα (α is the Kähler angle) of the blow up flow around the type II singularities of a symplectic mean curvature flow. We also study similar property of an almost calibrated Lagrangian mean curvature flow. We show the nonexistence of type II blow-up flows for a symplectic mean curvature flow satisfying $|A|^2≤λ|H|^2$ and $cosα≥δ>1-\frac{1}{2λ}(½≤α≤ 2)$, or for an almost calibrated Lagrangian mean curvature flow satisfying $|A|^2≤λ|H|^2$ and $cosθ≥δ>max\ {0,1-\frac{1}{λ}}(\frac34≤λ≤ 2)$, where θ is the Lagrangian angle.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jpde.v25.n3.1
Journal of Partial Differential Equations, Vol. 25 (2012), Iss. 3 : pp. 199–207
Published online: 2012-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 9
Keywords: Symplectic surface