Global Strong Solutions for the Viscous, Micropolar, Compressible Flow

Global Strong Solutions for the Viscous, Micropolar, Compressible Flow

Year:    2011

Journal of Partial Differential Equations, Vol. 24 (2011), Iss. 2 : pp. 158–164

Abstract

In this paper, we consider the viscous, micropolar, compressible flow in one dimension. We give the proof of existence and uniqueness of strong solutions for the initial boundary problem that vacuum can be allowed initially.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v24.n2.5

Journal of Partial Differential Equations, Vol. 24 (2011), Iss. 2 : pp. 158–164

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    Micropolar

  1. Zero dissipation limit to rarefaction wave with vacuum for the micropolar compressible flow with temperature‐dependent transport coefficients

    Gong, Guiqiong

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 7 P.5280

    https://doi.org/10.1002/mma.7110 [Citations: 1]
  2. Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations

    Wei, Ruiying | Guo, Boling | Li, Yin

    Journal of Differential Equations, Vol. 263 (2017), Iss. 5 P.2457

    https://doi.org/10.1016/j.jde.2017.04.002 [Citations: 29]
  3. Large-Time Behavior of Solutions to the Inflow Problem of the Non-Isentropic Micropolar Fluid Model

    Gao, Junpei | Cui, Haibo

    Acta Mathematica Scientia, Vol. 41 (2021), Iss. 4 P.1169

    https://doi.org/10.1007/s10473-021-0410-z [Citations: 0]
  4. Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity

    Duan, Ran

    Journal of Mathematical Analysis and Applications, Vol. 463 (2018), Iss. 2 P.477

    https://doi.org/10.1016/j.jmaa.2018.03.009 [Citations: 19]
  5. Stability of the composite wave for the inflow problem on the micropolar fluid model

    Cui, Haibo | Yin, Haiyan

    Communications on Pure & Applied Analysis, Vol. 16 (2017), Iss. 4 P.1265

    https://doi.org/10.3934/cpaa.2017062 [Citations: 10]
  6. On the Decay of Higher-Order Norms of the Solutions to the Compressible Micropolar Fluids System

    毛, 亮

    Pure Mathematics, Vol. 09 (2019), Iss. 01 P.71

    https://doi.org/10.12677/PM.2019.91010 [Citations: 2]
  7. Optimal time decay of the compressible micropolar fluids

    Liu, Qingqing | Zhang, Peixin

    Journal of Differential Equations, Vol. 260 (2016), Iss. 10 P.7634

    https://doi.org/10.1016/j.jde.2016.01.037 [Citations: 58]
  8. Global classical solutions to the compressible micropolar viscous fluids with large oscillations and vacuum

    Zhu, Canze | Tao, Qiang

    Mathematical Methods in the Applied Sciences, Vol. 46 (2023), Iss. 1 P.28

    https://doi.org/10.1002/mma.8490 [Citations: 1]
  9. Global solutions to the micropolar compressible flow with constant coefficients and vacuum

    Wan, Ling | Zhang, Lan

    Nonlinear Analysis: Real World Applications, Vol. 51 (2020), Iss. P.102990

    https://doi.org/10.1016/j.nonrwa.2019.102990 [Citations: 6]
  10. Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum

    Zhang, Peixin

    Boundary Value Problems, Vol. 2013 (2013), Iss. 1

    https://doi.org/10.1186/1687-2770-2013-160 [Citations: 4]
  11. Optimal decay rates for higher-order derivatives of solutions to the 3D compressible micropolar fluids system

    Qin, Liuna | Zhang, Yinghui

    Journal of Mathematical Analysis and Applications, Vol. 512 (2022), Iss. 1 P.126116

    https://doi.org/10.1016/j.jmaa.2022.126116 [Citations: 3]
  12. Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum

    Chen, Mingtao | Huang, Bin | Zhang, Jianwen

    Nonlinear Analysis: Theory, Methods & Applications, Vol. 79 (2013), Iss. P.1

    https://doi.org/10.1016/j.na.2012.10.013 [Citations: 54]
  13. The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model

    Chang, Shengchuang | Duan, Ran

    Journal of Mathematical Analysis and Applications, Vol. 516 (2022), Iss. 1 P.126462

    https://doi.org/10.1016/j.jmaa.2022.126462 [Citations: 0]
  14. Nonlinear stability of rarefaction waves for micropolar fluid model with large initial perturbation

    Gong, Guiqiong | Zhang, Junhao

    Journal of Differential Equations, Vol. 309 (2022), Iss. P.311

    https://doi.org/10.1016/j.jde.2021.11.023 [Citations: 1]
  15. Long-time behavior of solution to the compressible micropolar fluids with external force

    Liu, Qingqing | Zhang, Peixin

    Nonlinear Analysis: Real World Applications, Vol. 40 (2018), Iss. P.361

    https://doi.org/10.1016/j.nonrwa.2017.08.007 [Citations: 12]
  16. Nonlinear Stability of Rarefaction Waves for a Compressible Micropolar Fluid Model with Zero Heat Conductivity

    Jin, Jing | Rehman, Noor | Jiang, Qin

    Acta Mathematica Scientia, Vol. 40 (2020), Iss. 5 P.1352

    https://doi.org/10.1007/s10473-020-0512-z [Citations: 1]
  17. On the motion of the 3D compressible micropolar fluids with time periodic external forces

    Tan, Zhong | Xu, Qiuju

    Journal of Mathematical Physics, Vol. 59 (2018), Iss. 8

    https://doi.org/10.1063/1.5051990 [Citations: 4]
  18. Global well-posedness for the three dimensional compressible micropolar equations

    Liang, Tao | Li, Yongsheng | Zhai, Xiaoping

    Nonlinear Analysis: Real World Applications, Vol. 81 (2025), Iss. P.104192

    https://doi.org/10.1016/j.nonrwa.2024.104192 [Citations: 0]
  19. Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients

    Chen, Zhengzheng | Wang, Di

    Nonlinear Analysis: Real World Applications, Vol. 58 (2021), Iss. P.103226

    https://doi.org/10.1016/j.nonrwa.2020.103226 [Citations: 1]
  20. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line

    Cui, Haibo | Yin, Haiyan

    Discrete & Continuous Dynamical Systems - B, Vol. 26 (2021), Iss. 6 P.2899

    https://doi.org/10.3934/dcdsb.2020210 [Citations: 0]
  21. Large Time Behavior of Spherically Symmetrical Micropolar Fluid on Unbounded Domain

    Huang, Lan | Sun, Zhiying | Lu, Yongjin | Yang, Xin-Guang

    Applied Mathematics & Optimization, Vol. 84 (2021), Iss. S2 P.1607

    https://doi.org/10.1007/s00245-021-09806-3 [Citations: 3]
  22. Stability of stationary solutions for inflow problem on the micropolar fluid model

    Yin, Haiyan

    Zeitschrift für angewandte Mathematik und Physik, Vol. 68 (2017), Iss. 2

    https://doi.org/10.1007/s00033-017-0789-5 [Citations: 12]
  23. Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model

    Liu, Qingqing | Yin, Haiyan

    Nonlinear Analysis: Theory, Methods & Applications, Vol. 149 (2017), Iss. P.41

    https://doi.org/10.1016/j.na.2016.10.009 [Citations: 23]
  24. Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate

    Cui, Haibo | Yin, Haiyan

    Journal of Mathematical Analysis and Applications, Vol. 449 (2017), Iss. 1 P.464

    https://doi.org/10.1016/j.jmaa.2016.11.065 [Citations: 24]
  25. Global existence of strong solutions to the micro-polar, compressible flow with density-dependent viscosities

    Chen, Mingtao

    Boundary Value Problems, Vol. 2011 (2011), Iss. 1

    https://doi.org/10.1186/1687-2770-2011-13 [Citations: 2]
  26. Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model

    Jin, Jing | Duan, Ran

    Journal of Mathematical Analysis and Applications, Vol. 450 (2017), Iss. 2 P.1123

    https://doi.org/10.1016/j.jmaa.2016.12.085 [Citations: 17]
  27. Blowup criterion for viscous, compressible micropolar fluids with vacuum

    Chen, Mingtao

    Nonlinear Analysis: Real World Applications, Vol. 13 (2012), Iss. 2 P.850

    https://doi.org/10.1016/j.nonrwa.2011.08.021 [Citations: 38]
  28. Asymptotic behavior of the one-dimensional compressible micropolar fluid model

    Cui, Haibo | Gao, Junpei | Yao, Lei

    Electronic Research Archive, Vol. 29 (2021), Iss. 2 P.2063

    https://doi.org/10.3934/era.2020105 [Citations: 2]
  29. Zero dissipation limit to rarefaction wave with vacuum for the one-dimensional non-isentropic micropolar equations

    Gong, Guiqiong

    Nonlinear Analysis: Real World Applications, Vol. 56 (2020), Iss. P.103167

    https://doi.org/10.1016/j.nonrwa.2020.103167 [Citations: 2]
  30. Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity

    Zheng, Liyun | Chen, Zhengzheng | Zhang, Sina

    Journal of Mathematical Analysis and Applications, Vol. 468 (2018), Iss. 2 P.865

    https://doi.org/10.1016/j.jmaa.2018.08.040 [Citations: 8]
  31. Global strong solution for initial–boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity

    Duan, Ran

    Nonlinear Analysis: Real World Applications, Vol. 42 (2018), Iss. P.71

    https://doi.org/10.1016/j.nonrwa.2017.12.006 [Citations: 15]