Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds

Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds

Year:    2010

Journal of Partial Differential Equations, Vol. 23 (2010), Iss. 1 : pp. 68–79

Abstract

Let (M,g) be a complete non-compact Riemannian manifold with the m- dimensional Bakry-Émery Ricci curvature bounded below by a non-positive constant. In this paper, we give a localized Hamilton-type gradient estimate for the positive smooth bounded solutions to the following nonlinear diffusion equation u_t=Δu-∇φ·∇u-au\log u-bu, where φ is a C^2 function, and a ≠ 0 and b are two real constants. This work generalizes the results of Souplet and Zhang (Bull. London Math. Soc., 38 (2006), pp. 1045-1053) and Wu (Preprint, 2008).

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v23.n1.4

Journal of Partial Differential Equations, Vol. 23 (2010), Iss. 1 : pp. 68–79

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Local gradient estimate

  1. Harnack differential inequalities for the parabolic equation u t = ℒF(u) on Riemannian manifolds and applications

    Wang, Wen

    Acta Mathematica Sinica, English Series, Vol. 33 (2017), Iss. 5 P.620

    https://doi.org/10.1007/s10114-016-6260-2 [Citations: 1]
  2. Gradient estimate for a nonlinear heat equation on Riemannian manifolds

    Jiang, Xinrong

    Proceedings of the American Mathematical Society, Vol. 144 (2016), Iss. 8 P.3635

    https://doi.org/10.1090/proc/12995 [Citations: 13]
  3. Interpolating between constrained Li–Yau and Chow–Hamilton Harnack inequalities for a nonlinear parabolic equation

    Wu, Jia-Yong

    Journal of Mathematical Analysis and Applications, Vol. 396 (2012), Iss. 1 P.363

    https://doi.org/10.1016/j.jmaa.2012.06.032 [Citations: 0]
  4. Gradient estimates and liouville theorems for linear and nonlinear parabolic equations on riemannian manifolds

    ZHU, Xiaobao

    Acta Mathematica Scientia, Vol. 36 (2016), Iss. 2 P.514

    https://doi.org/10.1016/S0252-9602(16)30017-0 [Citations: 4]
  5. Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations

    Cavaterra, Cecilia | Dipierro, Serena | Gao, Zu | Valdinoci, Enrico

    The Journal of Geometric Analysis, Vol. 32 (2022), Iss. 2

    https://doi.org/10.1007/s12220-021-00812-z [Citations: 3]
  6. Elliptic gradient estimates for a nonlinear heat equation and applications

    Wu, Jia-Yong

    Nonlinear Analysis: Theory, Methods & Applications, Vol. 151 (2017), Iss. P.1

    https://doi.org/10.1016/j.na.2016.11.014 [Citations: 32]
  7. Elliptic gradient estimates and Liouville theorems for a weighted nonlinear parabolic equation

    Abolarinwa, Abimbola

    Journal of Mathematical Analysis and Applications, Vol. 473 (2019), Iss. 1 P.297

    https://doi.org/10.1016/j.jmaa.2018.12.049 [Citations: 13]