The Regularity of a Class of Degenerate Elliptic Monge-Ampere Equations

The Regularity of a Class of Degenerate Elliptic Monge-Ampere Equations

Year:    2009

Journal of Partial Differential Equations, Vol. 22 (2009), Iss. 3 : pp. 234–265

Abstract

In the present paper the regularity of solutions to Dirichlet problem of degenerate elliptic Monge-Ampère equations is studied. Let Ω⊂R^2 be smooth and convex. Suppose that u∈C^2(Ω) is a solution to the following problem: det(u_{ij}) = K(x) f (x,u,Du) in Ω with u = 0 on ∂Ω. Then u∈C^∞(\bar{Ω}) provided that f (x,u,p) is smooth and positive in \bar{Ω}×R×R^2, K > 0 in Ω and near ∂Ω, K=d^m\tilde{K}, where d is the distance to ∂Ω, m some integer bigger than 1 and \tilde{K} smooth and positive on \bar{Ω}.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jpde.v22.n3.4

Journal of Partial Differential Equations, Vol. 22 (2009), Iss. 3 : pp. 234–265

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    32

Keywords:    Degenerate Monge-Ampère equation

  1. Analyticity of the solutions to degenerate Monge-Ampère equations

    Huang, Genggeng

    Lü, Yingshu

    Journal of Differential Equations, Vol. 376 (2023), Iss. P.633

    https://doi.org/10.1016/j.jde.2023.09.003 [Citations: 1]