Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications

Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications

Year:    2007

Journal of Partial Differential Equations, Vol. 20 (2007), Iss. 4 : pp. 322–336

Abstract

In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2007-JPDE-5312

Journal of Partial Differential Equations, Vol. 20 (2007), Iss. 4 : pp. 322–336

Published online:    2007-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Generalized Baouendi-Grushin operator