Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves

Local Well-posedness of Interaction Equations for Short and Long Dispersive Waves

Year:    2004

Journal of Partial Differential Equations, Vol. 17 (2004), Iss. 2 : pp. 137–151

Abstract

The well-posedness of the Cauchy problem for the system {i∂_tu + ∂²_xu = uv + |u|²u, t, x ∈ \mathbb{R}, ∂_tv + ∂_xΗ∂_xv = ∂_x|u|², u(0, x) = u_0(x), v(0, x) = v_0(x), is considered. It is proved that there exists a unique local solution (u(x, t), v(x, t)) ∈ C([0, T);H^s) ×C([0, T);H^{s-\frac{1}{2}}) for any initial data (u_0, v_0) ∈ H^s(\mathbb{R}) ×H^{s-\frac{1}{2}} (\mathbb{R})(s ≥ \frac{1}{4}) and the solution depends continuously on the initial data.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2004-JPDE-5382

Journal of Partial Differential Equations, Vol. 17 (2004), Iss. 2 : pp. 137–151

Published online:    2004-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Short and long dispersive waves