Global <em>W</em><sup>2,<em>p</em></sup> (2<=<em>p</em><infinity) Solutions of GBBM Equations in Arbitrary Dimensions
Year: 1999
Journal of Partial Differential Equations, Vol. 12 (1999), Iss. 1 : pp. 63–70
Abstract
This paper studies the initial-boundary value problem of GBBM equations u_t - Δu_t = div f(u) \qquad\qquad\qquad(a) u(x, 0) = u_0(x)\qquad\qquad\qquad(b) u |∂Ω = 0 \qquad\qquad\qquad(c) in arbitrary dimensions, Ω ⊂ R^n. Suppose that. f(s) ∈ C¹ and |f'(s)| ≤ C (1+|s|^ϒ), 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3, 0 ≤ ϒ < ∞ if n = 2, u_0 (x) ∈ W^{2⋅p}(Ω) ∩ W^{1⋅p}_0(Ω) (2 ≤ p < ∞), then ∀T > 0 there exists a unique global W^{2⋅p} solution u ∈ W^{1,∞}(0, T; W{2⋅p}(Ω)∩ W^{1⋅p}_0(Ω)), so the known results are generalized and improved essentially.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/1999-JPDE-5525
Journal of Partial Differential Equations, Vol. 12 (1999), Iss. 1 : pp. 63–70
Published online: 1999-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 8
Keywords: GBBM equation