Regularity Results for Minimizers of Certain Functional Having Nonquadratic Growth with Obstacles

Regularity Results for Minimizers of Certain Functional Having Nonquadratic Growth with Obstacles

Year:    1997

Journal of Partial Differential Equations, Vol. 10 (1997), Iss. 1 : pp. 65–84

Abstract

We prove partial regularity for minimizers of degenerate variational integrals ∫_Ω F(x, u, Du)dx with obstacles of either the form (i) μ_f = {u ∈ H^{1,m} (Ω,\mathbb{R}^N)|u^N ≥ f_1(u¹, ... ,u^{N-1}) + f_2(x) a.e.} or (ii) μ_N = {u ∈ H^{1,m}(Ω,\mathbb{R}^N)|u^i(x) ≥ h^i(x), a.e.; i=1, ... ,N} The typical mode of variational integrals is given by ∫_Ω [a^{αβ}(x, u)b_{ij}(x, u)D_αu^i D_βu^i]^{\frac{m}{2}}dx, m ≥ 2

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1997-JPDE-5582

Journal of Partial Differential Equations, Vol. 10 (1997), Iss. 1 : pp. 65–84

Published online:    1997-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Degenerate variational integral