Uniqueness of the Solutions of u<sub>t</sub>=Δu<sup>m</sup> and u<sub>t</sub>=Δu<sup>m</sup>-u<sup>p</sup> with Initial Datum a Measure: the Fast Diffusion Case

Uniqueness of the Solutions of u<sub>t</sub>=Δu<sup>m</sup> and u<sub>t</sub>=Δu<sup>m</sup>-u<sup>p</sup> with Initial Datum a Measure: the Fast Diffusion Case

Year:    1994

Journal of Partial Differential Equations, Vol. 7 (1994), Iss. 2 : pp. 143–159

Abstract

In this paper, we study the Cauchy problems u_t = Δu^m \quad u(x, 0) = μ and u_t = Δu^m - u^p \quad u(x, 0) = μ where p > 0, m > (1 - \frac{α}{n})^+ and μ is a finite Radon measure. We prove the uniqueness of solution and the existence of solution.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1994-JPDE-5678

Journal of Partial Differential Equations, Vol. 7 (1994), Iss. 2 : pp. 143–159

Published online:    1994-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Porous medium equation