Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on H<sub>R</sub> \bigotimes R<sup>k</sup>

Local Solvability for a Class of Nonhomogeneous Left Invariant Differential Operators on H<sub>R</sub> \bigotimes R<sup>k</sup>

Year:    1990

Journal of Partial Differential Equations, Vol. 3 (1990), Iss. 2 : pp. 16–26

Abstract

In this paper we discuss tbe local solvability of the following nonhomogeneous left invariant differential operators on the nilpotent Lie group H_n⊗R^K: P(X, Y, T, Z) = Σ_{|α+β|+ζ+|y|≤m|α+β|+2l=a}a_{αβly}X^αY^βT^lZ^y where X_j, Y_j (j = 1, 2, …, n), T, Z_j(j = l, 2, …, K) are bases of left invariant vector fields on H_n⊗R^K and a_{αβly} are complex constants.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1990-JPDE-5795

Journal of Partial Differential Equations, Vol. 3 (1990), Iss. 2 : pp. 16–26

Published online:    1990-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Local solvability