Year: 2020
计算数学, Vol. 42 (2020), Iss. 1 : pp. 51–62
Abstract
最近,Bai和Benzi针对鞍点问题提出了一类正则化HSS(Regularized Hermitian and skew-Hermitian splitting,RHSS)预处理子(BIT Numer.Math.,57(2017)287-311)。为了进一步分析RHSS预处理子的效果,本文重点研究了RHSS预处理鞍点矩阵特征值的估计,分析了复特征值实部和模的上下界、实特征值的上下界,还给出了特征值均为实数的充分条件。当正则化矩阵取为零矩阵时,RHSS预处理子退化为HSS预处理子,分析表明本文给出的复特征值实部的界比已有的结果更精确。数值算例验证了本文给出的理论结果。
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: Multiple languages
DOI: https://doi.org/2020-JSSX-17599
计算数学, Vol. 42 (2020), Iss. 1 : pp. 51–62
Published online: 2020-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: 鞍点矩阵 正则化HSS预处理子 特征值估计