Year: 2012
数学文化, Vol. 3 (2012), Iss. 3 : pp. 73–78
Abstract
William Feller的经典教科书《概率论及其应用》提到一个试验:重复抛掷一个标准硬币,一直到连续6次出现人头。用H(= Head)代表硬币的人头那面,T(= Tail)代表背面,连续出现6个H所构成的模式就表示为HHHHHH。抛掷硬币的次数就叫做这个模式的“等待时间”,它是一个随机变量,最小值是6,最大值无限。问题是:这个等待时间的均值有多大?
标准硬币的H和T出现的概率均等,所有2^6=64个由H和T构成的长度为6的模式都有相同的机会出现。因此,凭直觉我们似乎可以得出结论——平均等待时间是64。但Feller本人不放心,于是他细心地作了冗长的计算,结果是:HHHHHH模式的平均等待时间不是64,而是126。这否定了前面的推论。Feller又尝试另一个长度为6的模式:HHTTHH模式的平均等待时间不是64,也不是126,而是70。
这些计算的结果“违反直觉”。但当科学真理与直觉相违背的时候,问题自然是在直觉那一方。原因何在?这需要我们深入思考。说句题外话:本文作者曾被电影《决胜21点》原型团队邀请参与其冒险赌博行为,但请不要认为这篇文章告诉你的是如何在赌桌上获胜,它记录的是“数学与工程的对话”。
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: Chinese
DOI: https://doi.org/2012-MC-11577
数学文化, Vol. 3 (2012), Iss. 3 : pp. 73–78
Published online: 2012-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 6