A New Fixed-Time Dynamical System for Absolute Value Equations

A New Fixed-Time Dynamical System for Absolute Value Equations

Year:    2023

Author:    Dongmei Yu, Xuehua Li, Yinong Yang, Dongmei Yu, Deren Han, Cairong Chen, Yinong Yang, Deren Han, Cairong Chen

Numerical Mathematics: Theory, Methods and Applications, Vol. 16 (2023), Iss. 3 : pp. 622–633

Abstract

A novel dynamical model with fixed-time convergence is presented to solve the system of absolute value equations (AVEs). Under a mild condition, it is proved that the solution of the proposed dynamical system converges to the solution of the AVEs. Moreover, in contrast to the existing inversion-free dynamical system (C. Chen et al., Appl. Numer. Math. 168 (2021), 170–181), a conservative settling-time of the proposed method is given. Numerical simulations illustrate the effectiveness of the new method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.OA-2022-0148

Numerical Mathematics: Theory, Methods and Applications, Vol. 16 (2023), Iss. 3 : pp. 622–633

Published online:    2023-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Absolute value equation fixed-time convergence dynamical system numerical simulation.

Author Details

Dongmei Yu

Xuehua Li

Yinong Yang

Dongmei Yu

Deren Han

Cairong Chen

Yinong Yang

Deren Han

Cairong Chen