Proximal ADMM for Euler's Elastica Based Image Decomposition Model

Proximal ADMM for Euler's Elastica Based Image Decomposition Model

Year:    2019

Numerical Mathematics: Theory, Methods and Applications, Vol. 12 (2019), Iss. 2 : pp. 370–402

Abstract

This paper studies  image decomposition models which involve functional related to total variation and Euler's elastica energy. Such kind of variational models with first order and higher order derivatives have been widely used in image processing to accomplish advanced tasks. However, these non-linear partial differential equations usually take high computational cost by the gradient descent method.  In this paper, we propose a proximal alternating direction method of multipliers (ADMM) for total variation (TV) based Vese-Osher's decomposition model [L. A. Vese and S. J. Osher, J. Sci.  Comput., 19.1 (2003), pp. 553-572]  and its extension with Euler's elastica regularization. We demonstrate that efficient and effective solutions to these minimization problems can be obtained by proximal based numerical algorithms. In numerical experiments, we present numerous results on image decomposition and image denoising, which conforms significant improvement of the proposed models over standard models.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.OA-2017-0149

Numerical Mathematics: Theory, Methods and Applications, Vol. 12 (2019), Iss. 2 : pp. 370–402

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords: