Loading [MathJax]/jax/output/CommonHTML/jax.js
Journals
Resources
About Us
Open Access
Go to previous page

Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, B-Nekrasov Matrices and QN-Matrices

Notes on New Error Bounds for Linear  Complementarity Problems of Nekrasov Matrices, $B$-Nekrasov Matrices and $QN$-Matrices

Year:    2019

Author:    Jicheng Li, Ping-Fan Dai, Jianchao Bai, Jicheng Li, Liqiang Dong, Jianchao Bai, Liqiang Dong

Numerical Mathematics: Theory, Methods and Applications, Vol. 12 (2019), Iss. 4 : pp. 1191–1212

Abstract

In this paper, we give new error bounds for linear complementarity problems when the matrices involved are Nekrasov matrices, B-Nekrasov matrices and QN-matrices, respectively. It is proved that the obtained bounds are better than those of Li et al. (New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices, Numer. Algor., 74 (2017), pp. 997-1009) and Gao et al. (New error bounds for linear complementarity problems of QN-matrices, Numer. Algor.,  77 (2018), pp. 229-242) in some cases, respectively.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.OA-2018-0091

Numerical Mathematics: Theory, Methods and Applications, Vol. 12 (2019), Iss. 4 : pp. 1191–1212

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:    Error bounds linear complementarity problem Nekrasov matrices B-Nekrasov matrices QN-matrices.

Author Details

Jicheng Li Email

Ping-Fan Dai Email

Jianchao Bai Email

Jicheng Li Email

Liqiang Dong Email

Jianchao Bai Email

Liqiang Dong Email

  1. Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices

    Wang, Shiyun | Liu, Dan | Tian, Wanfu | Lyu, Zhen-Hua

    Acta Applicandae Mathematicae, Vol. 191 (2024), Iss. 1

    https://doi.org/10.1007/s10440-024-00659-w [Citations: 0]
  2. Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications

    Gao, Lei | Gu, Xian-Ming | Jia, Xiudan | Li, Chaoqian

    Numerical Algorithms, Vol. 97 (2024), Iss. 4 P.1453

    https://doi.org/10.1007/s11075-024-01758-3 [Citations: 2]