Year: 2018
Numerical Mathematics: Theory, Methods and Applications, Vol. 11 (2018), Iss. 1 : pp. 92–127
Abstract
Numerical computation plays an important role in the study of differential equations with time-delay, because a simple and explicit analytic solution is usually un available. Time-stepping methods based on discretizing the temporal derivative with some step-size $∆t$ are the main tools for this task. To get accurate numerical solutions, in many cases it is necessary to require $∆t < τ$ and this will be a rather unwelcome restriction when $τ$, the quantity of time-delay, is small. In this paper, we propose a method for a class of time-delay problems, which is completely meshless. The idea lies in representing the solution by its Laplace inverse transform along a carefully designed contour in the complex plane and then approximating the contour integral by the Filon-Clenshaw-Curtis (FCC) quadrature in a few fast growing subintervals. The computations of the solution for all time points of interest are naturally parallelizable and for each time point the implementations of the FCC quadrature in all subintervals are also parallelizable. For each time point and each subinterval, the FCC quadrature can be implemented by fast Fourier transform. Numerical results are given to check the efficiency of the proposed method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2018.m1636
Numerical Mathematics: Theory, Methods and Applications, Vol. 11 (2018), Iss. 1 : pp. 92–127
Published online: 2018-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 36
Keywords: Delay differential equations meshless/parallel computatio contour integral Filon-Clenshaw-Curtis quadrature.
-
Boundary layer challenges: A comparative analysis of two efficient meshless approaches
Alshammari, Abdulrahman Obaid
Khan, Muhammad Nawaz
Ahmad, Imtiaz
Partial Differential Equations in Applied Mathematics, Vol. 10 (2024), Iss. P.100743
https://doi.org/10.1016/j.padiff.2024.100743 [Citations: 1]