Year: 2018
Numerical Mathematics: Theory, Methods and Applications, Vol. 11 (2018), Iss. 4 : pp. 827–853
Abstract
In this paper, we study linear systems arising from time-space fractional Caputo-Riesz diffusion equations with time-dependent diffusion coefficients. The coefficient matrix is a summation of a block-lower-triangular-Toeplitz matrix (temporal component) and a block-diagonal-with-diagonal-times-Toeplitz-block matrix (spatial component). The main aim of this paper is to propose separable preconditioners for solving these linear systems, where a block ϵ-circulant preconditioner is used for the temporal component, while a block diagonal approximation is used for the spatial variable. The resulting preconditioner can be block-diagonalized in the temporal domain. Furthermore, the fast solvers can be employed to solve smaller linear systems in the spatial domain. Theoretically, we show that if the diffusion coefficient (temporal-dependent or spatial-dependent only) function is smooth enough, the singular values of the preconditioned matrix are bounded independent of discretization parameters. Numerical examples are tested to show the performance of proposed preconditioner.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2018.s09
Numerical Mathematics: Theory, Methods and Applications, Vol. 11 (2018), Iss. 4 : pp. 827–853
Published online: 2018-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 27