Multidimensional Iterative Filtering Method for the Decomposition of High-Dimensional Non-Stationary Signals

Multidimensional Iterative Filtering Method for the Decomposition of High-Dimensional Non-Stationary Signals

Year:    2017

Numerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 2 : pp. 278–298

Abstract

Iterative Filtering (IF) is an alternative technique to the Empirical Mode Decomposition (EMD) algorithm for the decomposition of non-stationary and non-linear signals. Recently in [3] IF has been proved to be convergent for any $L^2$ signal and its stability has been also demonstrated through examples. Furthermore, in [3] the so called Fokker-Planck (FP) filters have been introduced. They are smooth at every point and have compact supports. Based on those results, in this paper we introduce the Multidimensional Iterative Filtering (MIF) technique for the decomposition and time-frequency analysis of non-stationary high-dimensional signals. We present the extension of FP filters to higher dimensions. We prove convergence results under general sufficient conditions on the filter shape. Finally we illustrate the promising performance of MIF algorithm, equipped with high-dimensional FP filters, when applied to the decomposition of two dimensional signals.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2017.s05

Numerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 2 : pp. 278–298

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:   

  1. Tailoring 2D fast iterative filtering algorithm for low-contrast optical fringe pattern preprocessing

    Rogalski, Mikołaj | Pielach, Mateusz | Cicone, Antonio | Zdańkowski, Piotr | Stanaszek, Luiza | Drela, Katarzyna | Patorski, Krzysztof | Lukomska, Barbara | Trusiak, Maciej

    Optics and Lasers in Engineering, Vol. 155 (2022), Iss. P.107069

    https://doi.org/10.1016/j.optlaseng.2022.107069 [Citations: 9]
  2. Fringe pattern preprocessing via adaptive multidirectional empirical mode decomposition

    Liang, Lingfei | Liu, Zhonghua

    Optics Express, Vol. 32 (2024), Iss. 24 P.43512

    https://doi.org/10.1364/OE.539025 [Citations: 0]
  3. Novel optimization-based bidimensional empirical mode decomposition

    Xie, Qi | Hu, Jianping | Wang, Xiaochao | Du, Ying | Qin, Hong

    Digital Signal Processing, Vol. 133 (2023), Iss. P.103891

    https://doi.org/10.1016/j.dsp.2022.103891 [Citations: 7]
  4. Study of boundary conditions in the Iterative Filtering method for the decomposition of nonstationary signals

    Cicone, Antonio | Dell’Acqua, Pietro

    Journal of Computational and Applied Mathematics, Vol. 373 (2020), Iss. P.112248

    https://doi.org/10.1016/j.cam.2019.04.028 [Citations: 23]
  5. Multivariate Fast Iterative Filtering for the Decomposition of Nonstationary Signals

    Cicone, Antonio | Pellegrino, Enza

    IEEE Transactions on Signal Processing, Vol. 70 (2022), Iss. P.1521

    https://doi.org/10.1109/TSP.2022.3157482 [Citations: 28]
  6. Specific Recognition Technology of Infrared Absorption Spectra Based on Continuous Wavelet Decomposition

    Yu, Yongbo | Shang, Houfei | Du, Zhenhui | Gao, Nan | Li, Jinyi | Meng, Zhaozong | Zhang, Zonghua

    Spectroscopy, Vol. (2022), Iss. P.42

    https://doi.org/10.56530/spectroscopy.mz7490j2 [Citations: 0]
  7. Numerical analysis for iterative filtering with new efficient implementations based on FFT

    Cicone, Antonio | Zhou, Haomin

    Numerische Mathematik, Vol. 147 (2021), Iss. 1 P.1

    https://doi.org/10.1007/s00211-020-01165-5 [Citations: 52]
  8. Detection of electromagnetic anomalies over seismic regions during two strong (MW > 5) earthquakes

    Recchiuti, D. | D’Angelo, G. | Papini, E. | Diego, P. | Cicone, A. | Parmentier, A. | Ubertini, P. | Battiston, R. | Piersanti, M.

    Frontiers in Earth Science, Vol. 11 (2023), Iss.

    https://doi.org/10.3389/feart.2023.1152343 [Citations: 2]
  9. Advances in Mathematical Methods and High Performance Computing

    Nonstationary Signal Decomposition for Dummies

    Cicone, Antonio

    2019

    https://doi.org/10.1007/978-3-030-02487-1_3 [Citations: 10]
  10. Maximizing the detection of thermal imprints in civil engineering composites via numerical and thermographic results pre-processed by a groundbreaking mathematical approach

    Sfarra, Stefano | Cicone, Antonio | Yousefi, Bardia | Perilli, Stefano | Robol, Leonardo | Maldague, Xavier P.V.

    International Journal of Thermal Sciences, Vol. 177 (2022), Iss. P.107553

    https://doi.org/10.1016/j.ijthermalsci.2022.107553 [Citations: 7]
  11. Spectral and convergence analysis of the Discrete ALIF method

    Cicone, Antonio | Garoni, Carlo | Serra-Capizzano, Stefano

    Linear Algebra and its Applications, Vol. 580 (2019), Iss. P.62

    https://doi.org/10.1016/j.laa.2019.06.021 [Citations: 23]
  12. Applying an Iterative Filtering Method for Optical Fringe Patterns Preprocessing

    Rogalski, Mikołaj | Pielach, Mateusz | Cywińska, Maria | Cicone, Antonio | Trusiak, Maciej

    OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP), (2021), P.CF2B.4

    https://doi.org/10.1364/COSI.2021.CF2B.4 [Citations: 0]
  13. How Nonlinear-Type Time-Frequency Analysis Can Help in Sensing Instantaneous Heart Rate and Instantaneous Respiratory Rate from Photoplethysmography in a Reliable Way

    Cicone, Antonio | Wu, Hau-Tieng

    Frontiers in Physiology, Vol. 8 (2017), Iss.

    https://doi.org/10.3389/fphys.2017.00701 [Citations: 28]
  14. Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis

    Lv, Yong | Zhang, Yi | Yi, Cancan

    Entropy, Vol. 20 (2018), Iss. 12 P.920

    https://doi.org/10.3390/e20120920 [Citations: 20]
  15. Adaptive Local Iterative Filtering: A Promising Technique for the Analysis of Nonstationary Signals

    Piersanti, M. | Materassi, M. | Cicone, A. | Spogli, L. | Zhou, H. | Ezquer, R. G.

    Journal of Geophysical Research: Space Physics, Vol. 123 (2018), Iss. 1 P.1031

    https://doi.org/10.1002/2017JA024153 [Citations: 42]
  16. Iterative filtering as a direct method for the decomposition of nonstationary signals

    Cicone, Antonio

    Numerical Algorithms, Vol. 85 (2020), Iss. 3 P.811

    https://doi.org/10.1007/s11075-019-00838-z [Citations: 49]
  17. Automated System for Epileptic EEG Detection Using Iterative Filtering

    Sharma, Rishi Raj | Varshney, Piyush | Pachori, Ram Bilas | Vishvakarma, Santosh Kumar

    IEEE Sensors Letters, Vol. 2 (2018), Iss. 4 P.1

    https://doi.org/10.1109/LSENS.2018.2882622 [Citations: 76]
  18. Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L'Aquila earthquake

    Bertello, Igor | Piersanti, Mirko | Candidi, Maurizio | Diego, Piero | Ubertini, Pietro

    Annales Geophysicae, Vol. 36 (2018), Iss. 5 P.1483

    https://doi.org/10.5194/angeo-36-1483-2018 [Citations: 19]
  19. Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis

    Dash, Deba Prasad | Kolekar, Maheshkumar | Chakraborty, Chinmay | Khosravi, Mohammad R.

    ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 23 (2024), Iss. 1 P.1

    https://doi.org/10.1145/3552512 [Citations: 13]
  20. New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms

    Stallone, Angela | Cicone, Antonio | Materassi, Massimo

    Scientific Reports, Vol. 10 (2020), Iss. 1

    https://doi.org/10.1038/s41598-020-72193-2 [Citations: 105]
  21. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake

    Piersanti, Mirko | Materassi, Massimo | Battiston, Roberto | Carbone, Vincenzo | Cicone, Antonio | D’Angelo, Giulia | Diego, Piero | Ubertini, Pietro

    Remote Sensing, Vol. 12 (2020), Iss. 20 P.3299

    https://doi.org/10.3390/rs12203299 [Citations: 44]
  22. Improving the detection of thermal bridges in buildings via on-site infrared thermography: The potentialities of innovative mathematical tools

    Sfarra, Stefano | Cicone, Antonio | Yousefi, Bardia | Ibarra-Castanedo, Clemente | Perilli, Stefano | Maldague, Xavier

    Energy and Buildings, Vol. 182 (2019), Iss. P.159

    https://doi.org/10.1016/j.enbuild.2018.10.017 [Citations: 57]
  23. Medical Image Analysis Using AM-FM Models and Methods

    Constantinou, Kyriacos P. | Constantinou, Ioannis P. | Pattichis, Constantinos S. | Pattichis, Marios S.

    IEEE Reviews in Biomedical Engineering, Vol. 14 (2021), Iss. P.270

    https://doi.org/10.1109/RBME.2020.2967273 [Citations: 11]
  24. Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis

    Spogli, Luca | Piersanti, Mirko | Cesaroni, Claudio | Materassi, Massimo | Cicone, Antonio | Alfonsi, Lucilla | Romano, Vincenzo | Ezquer, Rodolfo Gerardo

    Journal of Space Weather and Space Climate, Vol. 9 (2019), Iss. P.A35

    https://doi.org/10.1051/swsc/2019032 [Citations: 19]
  25. Robust Kramers–Kronig holographic imaging with Hilbert–Huang transform

    Chang, Xuyang | Shen, Cheng | Liu, Sitian | Zheng, Dezhi | Wang, Shuai | Yang, Changhuei | Huang, Norden E. | Bian, Liheng

    Optics Letters, Vol. 48 (2023), Iss. 15 P.4161

    https://doi.org/10.1364/OL.495895 [Citations: 2]
  26. An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm

    Piersanti, Giovanni | Piersanti, Mirko | Cicone, Antonio | Canofari, Paolo | Di Domizio, Marco

    Energy Economics, Vol. 92 (2020), Iss. P.104952

    https://doi.org/10.1016/j.eneco.2020.104952 [Citations: 8]