A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods

A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods

Year:    2015

Numerical Mathematics: Theory, Methods and Applications, Vol. 8 (2015), Iss. 3 : pp. 383–405

Abstract

In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This correction scheme can increase the overall efficiency of solving eigenvalue problems by the nonconforming finite element method. Furthermore, as same as the direct eigenvalue solving by nonconforming finite element methods, this multilevel correction method can also produce the lower-bound approximations of the eigenvalues.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2015.m1334

Numerical Mathematics: Theory, Methods and Applications, Vol. 8 (2015), Iss. 3 : pp. 383–405

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    23

Keywords:   

  1. Spectral Indicator Method for a Non-selfadjoint Steklov Eigenvalue Problem

    Liu, J. | Sun, J. | Turner, T.

    Journal of Scientific Computing, Vol. 79 (2019), Iss. 3 P.1814

    https://doi.org/10.1007/s10915-019-00913-6 [Citations: 23]
  2. A multilevel Newton’s method for the Steklov eigenvalue problem

    Yue, Meiling | Xu, Fei | Xie, Manting

    Advances in Computational Mathematics, Vol. 48 (2022), Iss. 3

    https://doi.org/10.1007/s10444-022-09934-6 [Citations: 1]
  3. A full multigrid method for the Steklov eigenvalue problem

    Xu, Fei

    International Journal of Computer Mathematics, Vol. 96 (2019), Iss. 12 P.2371

    https://doi.org/10.1080/00207160.2018.1562060 [Citations: 4]
  4. An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem

    Xu, Fei | Yue, Meiling | Huang, Qiumei | Ma, Hongkun

    Applied Numerical Mathematics, Vol. 156 (2020), Iss. P.210

    https://doi.org/10.1016/j.apnum.2020.04.020 [Citations: 5]
  5. Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem

    You, Chun'guang | Xie, Hehu | Liu, Xuefeng

    SIAM Journal on Numerical Analysis, Vol. 57 (2019), Iss. 3 P.1395

    https://doi.org/10.1137/18M1189592 [Citations: 22]
  6. A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering

    Zhang, Yu | Bi, Hai | Yang, Yidu

    International Journal of Computer Mathematics, Vol. 97 (2020), Iss. 7 P.1412

    https://doi.org/10.1080/00207160.2019.1622686 [Citations: 9]
  7. The adaptive finite element method for the Steklov eigenvalue problem in inverse scattering

    Zhang, Yu | Bi, Hai | Yang, Yidu

    Open Mathematics, Vol. 18 (2020), Iss. 1 P.216

    https://doi.org/10.1515/math-2020-0140 [Citations: 1]
  8. An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications

    Xu, Fei | Huang, Qiumei

    Science China Mathematics, Vol. 64 (2021), Iss. 3 P.623

    https://doi.org/10.1007/s11425-018-9525-2 [Citations: 0]
  9. Conforming element method and shifted-inverse two-grid dicretization for the fourth-order Steklov eigenvalue problem

    Yang, Jie | Yang, Qingsong | Han, Jiayu

    Journal of Applied Mathematics and Computing, Vol. 70 (2024), Iss. 3 P.2487

    https://doi.org/10.1007/s12190-024-02056-w [Citations: 0]
  10. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems

    Jiang, Jiantao | An, Jing | Zhou, Jianwei

    Discrete and Continuous Dynamical Systems - B, Vol. 28 (2023), Iss. 1 P.50

    https://doi.org/10.3934/dcdsb.2022066 [Citations: 7]
  11. Pinning Effect on Current-Induced Domain Wall Motion in Nanostrip

    Yang, Lei

    East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 4 P.837

    https://doi.org/10.4208/eajam.181016.300517d [Citations: 3]
  12. A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem

    Xiong, Chunguang | Xie, Manting | Luo, Fusheng | Su, Hongling

    Computers & Mathematics with Applications, Vol. 144 (2023), Iss. P.90

    https://doi.org/10.1016/j.camwa.2023.05.025 [Citations: 1]
  13. AN EFFICIENT NUMERICAL METHOD BASED ON LEGENDRE-GALERKIN APPROXIMATION FOR THE STEKLOV EIGENVALUE PROBLEM IN SPHERICAL DOMAIN

    Tan, Ting | An, Jing

    Journal of Applied Analysis & Computation, Vol. 11 (2021), Iss. 2 P.587

    https://doi.org/10.11948/20180104 [Citations: 0]
  14. Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem

    Xu, Fei | Chen, Liu | Huang, Qiumei

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 6 P.2899

    https://doi.org/10.1051/m2an/2021076 [Citations: 3]