Wavelets and Optical Flow Motion Estimation

Wavelets and Optical Flow Motion Estimation

Year:    2013

Numerical Mathematics: Theory, Methods and Applications, Vol. 6 (2013), Iss. 1 : pp. 116–137

Abstract

This article describes the implementation of a simple wavelet-based optical-flow motion estimator dedicated to continuous motions such as fluid flows. The wavelet representation of the unknown velocity field is considered. This scale-space representation, associated to a simple gradient-based optimization algorithm, sets up a well-defined multiresolution framework for the optical flow estimation. Moreover, a very simple closure mechanism, approaching locally the solution by high-order polynomials is provided by truncating the wavelet basis at fine scales. Accuracy and efficiency of the proposed method are evaluated on image sequences of turbulent fluid flows.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2013.mssvm07

Numerical Mathematics: Theory, Methods and Applications, Vol. 6 (2013), Iss. 1 : pp. 116–137

Published online:    2013-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:    Wavelets optical flow motion estimation large displacements fluid flows.

  1. High-resolution velocity determination from particle images via neural networks with optical flow velocimetry regularization

    Ji, Kexin | Hui, Xin | An, Qiang

    Physics of Fluids, Vol. 36 (2024), Iss. 3

    https://doi.org/10.1063/5.0189524 [Citations: 2]
  2. Application of High-Resolution Wavelet-based Optical Flow Velocimetry (wOFV) to Hypersonic Boundary Layers

    Page, Wayne E. | Aultman, Matthew T. | Duan, Lian | Sutton, Jeffrey A. | McManus, Thomas A. | Peltier, Scott J.

    AIAA SCITECH 2024 Forum, (2024),

    https://doi.org/10.2514/6.2024-1752 [Citations: 0]
  3. Schlieren technique in soap film flows

    Auliel, M. I. | Hebrero, F. Castro | Sosa, R. | Artana, G.

    Experiments in Fluids, Vol. 58 (2017), Iss. 5

    https://doi.org/10.1007/s00348-017-2311-4 [Citations: 4]
  4. A sparse optical flow inspired method for 3D velocimetry

    Lu, George | Steinberg, Adam | Yano, Masayuki

    Experiments in Fluids, Vol. 64 (2023), Iss. 4

    https://doi.org/10.1007/s00348-023-03593-z [Citations: 2]
  5. Determining velocity from tagging velocimetry images using optical flow

    Gevelber, T. S. | Schmidt, B. E. | Mustafa, M. A. | Shekhtman, D. | Parziale, N. J.

    Experiments in Fluids, Vol. 63 (2022), Iss. 6

    https://doi.org/10.1007/s00348-022-03448-z [Citations: 1]
  6. Sensitivity of Wavelet-Based Optical Flow (wOFV) to Sources of Error

    Schmidt, Bryan E. | Page, Wayne E. | Sutton, Jeffrey A.

    AIAA Scitech 2021 Forum, (2021),

    https://doi.org/10.2514/6.2021-0123 [Citations: 2]
  7. Experimental Evaluation of Stereoscopic Wavelet-based Optical Flow Velocimetry (swOFV)

    Page, Wayne E. | Sutton, Jeffrey A.

    AIAA SCITECH 2022 Forum, (2022),

    https://doi.org/10.2514/6.2022-1944 [Citations: 2]
  8. A New Approach to Track Multiple Vehicles With the Combination of Robust Detection and Two Classifiers

    Min, Weidong | Fan, Mengdan | Guo, Xiaoguang | Han, Qing

    IEEE Transactions on Intelligent Transportation Systems, Vol. 19 (2018), Iss. 1 P.174

    https://doi.org/10.1109/TITS.2017.2756989 [Citations: 58]
  9. Wavelet-Based Optical Flow for Two-Component Wind Field Estimation from Single Aerosol Lidar Data

    Dérian, Pierre | Mauzey, Christopher F. | Mayor, Shane D.

    Journal of Atmospheric and Oceanic Technology, Vol. 32 (2015), Iss. 10 P.1759

    https://doi.org/10.1175/JTECH-D-15-0010.1 [Citations: 20]
  10. Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry

    Kucukal, E. | Man, Y. | Gurkan, Umut A. | Schmidt, B. E.

    Journal of Biomechanical Engineering, Vol. 143 (2021), Iss. 9

    https://doi.org/10.1115/1.4050647 [Citations: 12]
  11. Evaluation of Wavelet-Based Optical Flow Velocimetry from OH Scalar Fields in Reacting Turbulent Flows

    Schmidt, Bryan E. | Towery, Colin A. | Hamlington, Peter | Sutton, Jeffrey A.

    AIAA Scitech 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-0270 [Citations: 7]
  12. Accurate Near Wall Measurements in Wall Bounded Flows with wOFV via an Explicit No-Slip Boundary Condition

    Jassal, Gauresh R. | Schmidt, Bryan E.

    AIAA SCITECH 2023 Forum, (2023),

    https://doi.org/10.2514/6.2023-2444 [Citations: 1]
  13. Subgrid Variational Optimized Optical Flow Estimation Algorithm for Image Velocimetry

    Xu, Haoxuan | Wang, Jianping | Zhang, Ya | Zhang, Guo | Xiong, Zhaolong

    Sensors, Vol. 23 (2022), Iss. 1 P.437

    https://doi.org/10.3390/s23010437 [Citations: 3]
  14. Static and dynamic stability analysis of an SEM-based nanomanipulation system using a fast sub-pixel template matching algorithm

    Pang, Shuiquan | Zhang, Xianmin | Lu, Yihua | Li, Hai

    2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT), (2021), P.253

    https://doi.org/10.1109/ISRIMT53730.2021.9597171 [Citations: 1]
  15. Wavelet-based Optical Flow Velocimetry (wOFV) Applied to Tagging Velocimetry Data

    Gevelber, Tobin | Schmidt, Bryan E. | Mustafa, Muhammad A. | Shekhtman, David | Parziale, Nick J.

    AIAA Scitech 2021 Forum, (2021),

    https://doi.org/10.2514/6.2021-0121 [Citations: 0]
  16. Evaluation of seedless wavelet-based optical flow velocimetry for schlieren images

    Chen, Mingjia | Zhao, Zhixin | Hou, Yuchen | Zhu, Jiajian | Sun, Mingbo | Zhou, Bo

    Physics of Fluids, Vol. 36 (2024), Iss. 7

    https://doi.org/10.1063/5.0208692 [Citations: 1]
  17. Optical Flow Velocimetry using a Quasi-Optimal Basis with Explicit Viscosity-like Regularization

    Jassal, Gauresh R. | Schmidt, Bryan E.

    AIAA SCITECH 2024 Forum, (2024),

    https://doi.org/10.2514/6.2024-2664 [Citations: 0]
  18. Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows

    Nicolas, Alexander | Zentgraf, Florian | Linne, Mark | Dreizler, Andreas | Peterson, Brian

    Experiments in Fluids, Vol. 64 (2023), Iss. 3

    https://doi.org/10.1007/s00348-023-03594-y [Citations: 8]
  19. Improvements in the accuracy of wavelet-based optical flow velocimetry (wOFV) using an efficient and physically based implementation of velocity regularization

    Schmidt, B. E. | Sutton, J. A.

    Experiments in Fluids, Vol. 61 (2020), Iss. 2

    https://doi.org/10.1007/s00348-019-2869-0 [Citations: 34]
  20. Accurate near-wall measurements in wall bounded flows with optical flow velocimetry via an explicit no-slip boundary condition

    Jassal, Gauresh Raj | Schmidt, Bryan E

    Measurement Science and Technology, Vol. 34 (2023), Iss. 12 P.125303

    https://doi.org/10.1088/1361-6501/acf872 [Citations: 3]
  21. Development and Evaluation of Stereoscopic Wavelet-based Optical Flow Velocimetry (swOFV)

    Page, Wayne E. | Sutton, Jeffrey A.

    AIAA Scitech 2021 Forum, (2021),

    https://doi.org/10.2514/6.2021-0122 [Citations: 1]
  22. Preliminary Development of Tomographic Wavelet-based Optical Flow Velocimetry (TwOFV)

    Page, Wayne E. | Sutton, Jeffrey A.

    AIAA SCITECH 2023 Forum, (2023),

    https://doi.org/10.2514/6.2023-0633 [Citations: 0]
  23. High-Resolution Velocimetry from Tracer Particle Fields Using Wavelet-based Optical Flow

    Schmidt, Bryan E. | Sutton, Jeffrey A.

    2018 AIAA Aerospace Sciences Meeting, (2018),

    https://doi.org/10.2514/6.2018-1767 [Citations: 1]
  24. Motion estimation under location uncertainty for turbulent fluid flows

    Cai, Shengze | Mémin, Etienne | Dérian, Pierre | Xu, Chao

    Experiments in Fluids, Vol. 59 (2018), Iss. 1

    https://doi.org/10.1007/s00348-017-2458-z [Citations: 38]
  25. Ocean Turbulent Dynamics at Superresolution From Optimal Multiresolution Analysis and Multiplicative Cascade

    Sudre, Joel | Yahia, Hussein | Pont, Oriol | Garcon, Veronique

    IEEE Transactions on Geoscience and Remote Sensing, Vol. 53 (2015), Iss. 11 P.6274

    https://doi.org/10.1109/TGRS.2015.2436431 [Citations: 9]
  26. Optical Flow Velocimetry using a Quasi-Optimal Basis with Implicit Regularization

    Jassal, Gauresh R. | Dobrosotskaya, Julia A. | Schmidt, Bryan E.

    AIAA AVIATION 2022 Forum, (2022),

    https://doi.org/10.2514/6.2022-3336 [Citations: 0]
  27. Cross-correlation-based convolutional neural network with velocity regularization for high-resolution velocimetry of particle images

    Ji, Kexin | An, Qiang | Hui, Xin

    Physics of Fluids, Vol. 36 (2024), Iss. 7

    https://doi.org/10.1063/5.0211212 [Citations: 0]
  28. ICPER 2020

    Turbulent Flow Estimation by Wavelet Transform

    Osman, A. B. | Ovinis, Mark | Mihoob, Ahmed Muftah Montaser | Mohmmed, Abdalellah O. | Nisha Basah, Shafriza

    2023

    https://doi.org/10.1007/978-981-19-1939-8_1 [Citations: 0]
  29. Wavelet-based algorithm for correction of beam-steering artefacts in turbulent flow imaging at elevated pressures

    Zhou, Bo | Ruggles, Adam J. | Huang, Erxiong | Frank, Jonathan H.

    Experiments in Fluids, Vol. 60 (2019), Iss. 8

    https://doi.org/10.1007/s00348-019-2782-6 [Citations: 10]
  30. Background oriented schlieren image displacement estimation method based on global optical flow

    Li, Hu | Ma, Zhuangzhuang | Zhu, Haidong

    Flow Measurement and Instrumentation, Vol. 93 (2023), Iss. P.102420

    https://doi.org/10.1016/j.flowmeasinst.2023.102420 [Citations: 2]
  31. Seedless Velocimetry in Reacting Flows using OH PLIF Imaging and a Wavelet-based Optical Flow Method

    Schmidt, Bryan E. | Page, Wayne E. | Trueba, Ignacio | Sutton, Jeffrey A.

    AIAA SCITECH 2022 Forum, (2022),

    https://doi.org/10.2514/6.2022-0899 [Citations: 0]
  32. Seedless Velocimetry in a Turbulent Jet using Schlieren Imaging and a Wavelet-based Optical Flow Method

    Schmidt, Bryan E. | Page, Wayne E. | Sutton, Jeffrey A.

    AIAA Scitech 2020 Forum, (2020),

    https://doi.org/10.2514/6.2020-2207 [Citations: 5]
  33. Velocity refinement of PIV using global optical flow

    Seong, Jee Hyun | Song, Min Seop | Nunez, Daniel | Manera, Annalisa | Kim, Eung Soo

    Experiments in Fluids, Vol. 60 (2019), Iss. 11

    https://doi.org/10.1007/s00348-019-2820-4 [Citations: 20]
  34. An accurate optical flow estimation of PIV using fluid velocity decomposition

    Lu, Jin | Yang, Hua | Zhang, Qinghu | Yin, Zhouping

    Experiments in Fluids, Vol. 62 (2021), Iss. 4

    https://doi.org/10.1007/s00348-021-03176-w [Citations: 12]
  35. Hybrid Adaptive Wavelet-Based Optical Flow Algorithm for Background Oriented Schlieren (BOS) Experiments

    Zhang, Xin-yu | Wang, Li-Ming | Liu, Bin | Luo, Yue | Han, Xing-cheng

    Mathematical Problems in Engineering, Vol. 2020 (2020), Iss. P.1

    https://doi.org/10.1155/2020/5138153 [Citations: 1]
  36. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Patalano, Antoine | García, Carlos Marcelo | Rodríguez, Andrés

    Computers & Geosciences, Vol. 109 (2017), Iss. P.323

    https://doi.org/10.1016/j.cageo.2017.07.009 [Citations: 62]
  37. Wavelet-Based Optical Flow Estimation of Instant Surface Currents From Shore-Based and UAV Videos

    Derian, Pierre | Almar, Rafael

    IEEE Transactions on Geoscience and Remote Sensing, Vol. 55 (2017), Iss. 10 P.5790

    https://doi.org/10.1109/TGRS.2017.2714202 [Citations: 42]