Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem

Year:    2012

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 1–18

Abstract

A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical two-grid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.m12si01

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 1–18

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    18

Keywords:    Multigrid methods Lavrentiev regularization semismooth Newton methods parabolic partial differential equations optimal control theory.

  1. A leapfrog multigrid algorithm for the optimal control of parabolic PDEs with Robin boundary conditions

    Liu, Jun | Xiao, Mingqing

    Journal of Computational and Applied Mathematics, Vol. 307 (2016), Iss. P.216

    https://doi.org/10.1016/j.cam.2016.02.010 [Citations: 4]
  2. A new semi-smooth Newton multigrid method for parabolic PDE optimal control problems

    Liu, Jun | Xiao, Mingqing

    53rd IEEE Conference on Decision and Control, (2014), P.5568

    https://doi.org/10.1109/CDC.2014.7040260 [Citations: 4]
  3. A new multigrid method for unconstrained parabolic optimal control problems

    Li, Buyang | Liu, Jun | Xiao, Mingqing

    Journal of Computational and Applied Mathematics, Vol. 326 (2017), Iss. P.358

    https://doi.org/10.1016/j.cam.2017.06.008 [Citations: 11]
  4. A space–time variational method for optimal control problems: well-posedness, stability and numerical solution

    Beranek, Nina | Reinhold, Martin Alexander | Urban, Karsten

    Computational Optimization and Applications, Vol. 86 (2023), Iss. 2 P.767

    https://doi.org/10.1007/s10589-023-00507-x [Citations: 2]
  5. A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems

    Liu, Jun | Xiao, Mingqing

    Computational Optimization and Applications, Vol. 63 (2016), Iss. 1 P.69

    https://doi.org/10.1007/s10589-015-9759-z [Citations: 10]
  6. Leapfrog multigrid methods for parabolic optimal control problems

    Li, Buyang | Liu, Jun | Xiao, Mingqing

    The 27th Chinese Control and Decision Conference (2015 CCDC), (2015), P.137

    https://doi.org/10.1109/CCDC.2015.7161680 [Citations: 2]
  7. Stochastische Optimierung parabolischer PDE-Systeme unter Wahrscheinlichkeitsrestriktionen am Beispiel der Temperaturregelung eines Stabes

    Schmidt, Patrick | Geletu, Abebe | Li, Pu

    at - Automatisierungstechnik, Vol. 66 (2018), Iss. 11 P.975

    https://doi.org/10.1515/auto-2018-0011 [Citations: 4]