Multigrid Methods for Elliptic Optimal Control Problems with Pointwise State Constraints

Year:    2012

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 99–109

Abstract

An elliptic optimal control problem with constraints on the state variable is considered. The Lavrentiev-type regularization is used to treat the constraints on the state variable. To solve the problem numerically, the multigrid for optimization (MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented. Numerical results are reported to illustrate and compare the efficiency of both multigrid strategies.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.m12si06

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 99–109

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Elliptic optimal control problems Lavrentiev regularization multigrid methods pointwise state constraints.

  1. Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints

    Du, Ning | Ge, Liang | Liu, Wenbin

    Journal of Scientific Computing, Vol. 60 (2014), Iss. 1 P.160

    https://doi.org/10.1007/s10915-013-9790-0 [Citations: 7]
  2. A Fast Gradient Projection Method for a Constrained Fractional Optimal Control

    Du, Ning | Wang, Hong | Liu, Wenbin

    Journal of Scientific Computing, Vol. 68 (2016), Iss. 1 P.1

    https://doi.org/10.1007/s10915-015-0125-1 [Citations: 32]
  3. An DRCS preconditioning iterative method for a constrained fractional optimal control problem

    Tang, Shi-Ping | Huang, Yu-Mei

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 8

    https://doi.org/10.1007/s40314-021-01654-9 [Citations: 2]
  4. On the formulation and numerical simulation of distributed-order fractional optimal control problems

    Zaky, M.A. | Machado, J.A. Tenreiro

    Communications in Nonlinear Science and Numerical Simulation, Vol. 52 (2017), Iss. P.177

    https://doi.org/10.1016/j.cnsns.2017.04.026 [Citations: 143]
  5. An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems

    Fard, Omid Solaymani | Sarani, Farhad | Nosratipour, Hadi

    Bulletin of the Iranian Mathematical Society, Vol. 46 (2020), Iss. 4 P.943

    https://doi.org/10.1007/s41980-019-00303-6 [Citations: 0]
  6. A Numerical Method to Solve Fuzzy Fractional Optimal Control Problems Using Legendre Basis Functions

    Mirvakili, M. | Allahviranloo, T. | Soltanian, F.

    New Mathematics and Natural Computation, Vol. 17 (2021), Iss. 01 P.63

    https://doi.org/10.1142/S1793005721500046 [Citations: 1]