A Geometric Space-Time Multigrid Algorithm for the Heat Equation

Year:    2012

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 110–130

Abstract

We study the time-dependent heat equation on its space-time domain that is discretised by a $k$-spacetree. $k$-spacetrees are a generalisation of the octree concept and are a discretisation paradigm yielding a multiscale representation of dynamically adaptive Cartesian grids with low memory footprint. The paper presents a full approximation storage geometric multigrid implementation for this setting that combines the smoothing properties of multigrid for the equation's elliptic operator with a multiscale solution propagation in time. While the runtime and memory overhead for tackling the all-in-one space-time problem is bounded, the holistic approach promises to exhibit a better parallel scalability than classical time stepping, adaptive dynamic refinement in space and time fall naturally into place, as well as the treatment of periodic boundary conditions of steady cycle systems, on-time computational steering is eased as the algorithm delivers guesses for the solution's long-term behaviour immediately, and, finally, backward problems arising from the adjoint equation benefit from the the solution being available for any point in space and time.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.m12si07

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 1 : pp. 110–130

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Adaptive Cartesian grids geometric multiscale methods heat equation octree spacetree space-time discretisation.

  1. Convergence analysis of space-time domain decomposition method for parabolic equations

    Li, Shishun | Xie, Lin | Zhou, Lingling

    Computers & Mathematics with Applications, Vol. 139 (2023), Iss. P.209

    https://doi.org/10.1016/j.camwa.2022.08.012 [Citations: 0]
  2. Multilevel Space-Time Additive Schwarz Methods for Parabolic Equations

    Li, Shishun | Shao, Xinping | Cai, Xiao-Chuan

    SIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 5 P.A3012

    https://doi.org/10.1137/17M113808X [Citations: 13]
  3. Parallel Time Integration with Multigrid

    Falgout, R. D. | Friedhoff, S. | Kolev, Tz. V. | MacLachlan, S. P. | Schroder, J. B.

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.C635

    https://doi.org/10.1137/130944230 [Citations: 176]
  4. Multilevel space‐time multiplicative Schwarz preconditioner for parabolic equations

    Li, Shishun | Shao, Xinping | Chen, Rongliang

    Numerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 6

    https://doi.org/10.1002/nla.2390 [Citations: 4]
  5. A generalized predictive analysis tool for multigrid methods

    Friedhoff, S. | MacLachlan, S.

    Numerical Linear Algebra with Applications, Vol. 22 (2015), Iss. 4 P.618

    https://doi.org/10.1002/nla.1977 [Citations: 27]
  6. Delayed approximate matrix assembly in multigrid with dynamic precisions

    Murray, Charles D. | Weinzierl, Tobias

    Concurrency and Computation: Practice and Experience, Vol. 33 (2021), Iss. 11

    https://doi.org/10.1002/cpe.5941 [Citations: 1]
  7. Increased space-parallelism via time-simultaneous Newton-multigrid methods for nonstationary nonlinear PDE problems

    Dünnebacke, Jonas | Turek, Stefan | Lohmann, Christoph | Sokolov, Andriy | Zajac, Peter

    The International Journal of High Performance Computing Applications, Vol. 35 (2021), Iss. 3 P.211

    https://doi.org/10.1177/10943420211001940 [Citations: 5]
  8. Subdomain solution decomposition method for nonstationary problems

    Vabishchevich, P.N.

    Journal of Computational Physics, Vol. 472 (2023), Iss. P.111679

    https://doi.org/10.1016/j.jcp.2022.111679 [Citations: 1]
  9. AIR Algebraic Multigrid for a Space-Time Hybridizable Discontinuous Galerkin Discretization of Advection(-Diffusion)

    Sivas, A. A. | Southworth, B. S. | Rhebergen, S.

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 5 P.A3393

    https://doi.org/10.1137/20M1375103 [Citations: 6]
  10. Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study

    Falgout, R. D. | Manteuffel, T. A. | O'Neill, B. | Schroder, J. B.

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.S298

    https://doi.org/10.1137/16M1082330 [Citations: 37]
  11. Implicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential Equations

    Cong, Cui | Cai, Xiao-Chuan | Gustafson, Karl

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 1 P.C1

    https://doi.org/10.1137/12090410X [Citations: 11]
  12. A Parallel-in-Time Algorithm for High-Order BDF Methods for Diffusion and Subdiffusion Equations

    Wu, Shuonan | Zhou, Zhi

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 6 P.A3627

    https://doi.org/10.1137/20M1355690 [Citations: 7]
  13. Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems

    Gander, Martin J. | Neumüller, Martin

    SIAM Journal on Scientific Computing, Vol. 38 (2016), Iss. 4 P.A2173

    https://doi.org/10.1137/15M1046605 [Citations: 93]
  14. Convergence Analysis of Two-Level Space-Time Additive Schwarz Method for Parabolic Equations

    Li, Shishun | Cai, Xiao-Chuan

    SIAM Journal on Numerical Analysis, Vol. 53 (2015), Iss. 6 P.2727

    https://doi.org/10.1137/140993776 [Citations: 13]
  15. Nonlinear parallel-in-time simulations of multiphase flow in porous media

    Cheng, Tianpei | Yang, Haijian | Huang, Jizu | Yang, Chao

    Journal of Computational Physics, Vol. 494 (2023), Iss. P.112515

    https://doi.org/10.1016/j.jcp.2023.112515 [Citations: 1]
  16. Adaptive Space-Time Domain Decomposition for Multiphase Flow in Porous Media with Bound Constraints

    Cheng, Tianpei | Yang, Haijian | Huang, Jizu | Yang, Chao

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 3 P.B306

    https://doi.org/10.1137/23M1578139 [Citations: 0]
  17. Multigrid methods with space–time concurrency

    Falgout, R. D. | Friedhoff, S. | Kolev, Tz. V. | MacLachlan, S. P. | Schroder, J. B. | Vandewalle, S.

    Computing and Visualization in Science, Vol. 18 (2017), Iss. 4-5 P.123

    https://doi.org/10.1007/s00791-017-0283-9 [Citations: 34]
  18. Enabling local time stepping in the parallel implicit solution of reaction–diffusion equations via space-time finite elements on shallow tree meshes

    Krause, D. | Krause, R.

    Applied Mathematics and Computation, Vol. 277 (2016), Iss. P.164

    https://doi.org/10.1016/j.amc.2015.12.017 [Citations: 2]
  19. Space-Time Balancing Domain Decomposition

    Badia, Santiago | Olm, Marc

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 2 P.C194

    https://doi.org/10.1137/16M1074266 [Citations: 6]