Quasi-Optimal Convergence Rate of an AFEM for Quasi-Linear Problems of Monotone Type

Quasi-Optimal Convergence Rate of an AFEM for Quasi-Linear Problems of Monotone Type

Year:    2012

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 2 : pp. 131–156

Abstract

We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual $H^1$ Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz operators.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2012.m1023

Numerical Mathematics: Theory, Methods and Applications, Vol. 5 (2012), Iss. 2 : pp. 131–156

Published online:    2012-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Quasilinear elliptic equations adaptive finite element methods optimality.

  1. Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection

    Li, Guanglian | Xu, Yifeng

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 5 P.1645

    https://doi.org/10.1051/m2an/2019031 [Citations: 0]
  2. Convergence and quasi-optimality of an adaptive finite element method for nonmonotone quasi-linear elliptic problems on L2 errors

    Guo, Liming | Bi, Chunjia

    Computers & Mathematics with Applications, Vol. 139 (2023), Iss. P.38

    https://doi.org/10.1016/j.camwa.2023.03.005 [Citations: 0]
  3. Rate optimality of adaptive finite element methods with respect to overall computational costs

    Gantner, Gregor | Haberl, Alexander | Praetorius, Dirk | Schimanko, Stefan

    Mathematics of Computation, Vol. 90 (2021), Iss. 331 P.2011

    https://doi.org/10.1090/mcom/3654 [Citations: 16]
  4. A Convergent Adaptive Finite Element Method for Cathodic Protection

    Li, Guanglian | Xu, Yifeng

    Computational Methods in Applied Mathematics, Vol. 17 (2017), Iss. 1 P.105

    https://doi.org/10.1515/cmam-2016-0032 [Citations: 1]
  5. Rate optimal adaptive FEM with inexact solver for nonlinear operators

    Gantner, Gregor | Haberl, Alexander | Praetorius, Dirk | Stiftner, Bernhard

    IMA Journal of Numerical Analysis, Vol. 38 (2018), Iss. 4 P.1797

    https://doi.org/10.1093/imanum/drx050 [Citations: 23]
  6. Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods

    Heid, Pascal | Praetorius, Dirk | Wihler, Thomas P.

    Computational Methods in Applied Mathematics, Vol. 21 (2021), Iss. 2 P.407

    https://doi.org/10.1515/cmam-2021-0025 [Citations: 16]
  7. Analysis of an Adaptive Finite Element Method for Recovering the Robin Coefficient

    Xu, Yifeng | Zou, Jun

    SIAM Journal on Control and Optimization, Vol. 53 (2015), Iss. 2 P.622

    https://doi.org/10.1137/130941742 [Citations: 10]
  8. Axioms of adaptivity

    Carstensen, C. | Feischl, M. | Page, M. | Praetorius, D.

    Computers & Mathematics with Applications, Vol. 67 (2014), Iss. 6 P.1195

    https://doi.org/10.1016/j.camwa.2013.12.003 [Citations: 164]
  9. Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver

    Haberl, Alexander | Praetorius, Dirk | Schimanko, Stefan | Vohralík, Martin

    Numerische Mathematik, Vol. 147 (2021), Iss. 3 P.679

    https://doi.org/10.1007/s00211-021-01176-w [Citations: 14]
  10. On the convergence of adaptive iterative linearized Galerkin methods

    Heid, Pascal | Wihler, Thomas P.

    Calcolo, Vol. 57 (2020), Iss. 3

    https://doi.org/10.1007/s10092-020-00368-4 [Citations: 22]
  11. Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs

    Becker, Roland | Brunner, Maximilian | Innerberger, Michael | Melenk, Jens Markus | Praetorius, Dirk

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 57 (2023), Iss. 4 P.2193

    https://doi.org/10.1051/m2an/2023036 [Citations: 6]
  12. Convergence and quasi-optimality of an adaptive finite element method for semilinear elliptic problems on L2 errors

    Guo, Liming | Huang, Fenglin

    International Journal of Computer Mathematics, Vol. 97 (2020), Iss. 11 P.2337

    https://doi.org/10.1080/00207160.2019.1698734 [Citations: 2]
  13. Stopping Criteria for Adaptive Finite Element Solvers

    Arioli, Mario | Georgoulis, Emmanuil H. | Loghin, Daniel

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 3 P.A1537

    https://doi.org/10.1137/120867421 [Citations: 26]
  14. Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems

    Feischl, M. | Führer, T. | Praetorius, D.

    SIAM Journal on Numerical Analysis, Vol. 52 (2014), Iss. 2 P.601

    https://doi.org/10.1137/120897225 [Citations: 55]
  15. Adaptive finite element method for nonmonotone quasi-linear elliptic problems

    Guo, Liming | Bi, Chunjia

    Computers & Mathematics with Applications, Vol. 93 (2021), Iss. P.94

    https://doi.org/10.1016/j.camwa.2021.03.034 [Citations: 2]
  16. A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations

    Chen, Huangxin | Qiu, Weifeng | Shi, Ke

    Computer Methods in Applied Mechanics and Engineering, Vol. 333 (2018), Iss. P.287

    https://doi.org/10.1016/j.cma.2018.01.030 [Citations: 28]