Weakly Admissible Meshes and Discrete Extremal Sets

Weakly Admissible Meshes and Discrete Extremal Sets

Year:    2011

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 1 : pp. 1–12

Abstract

We present a brief survey on (Weakly) Admissible Meshes and corresponding Discrete Extremal Sets, namely Approximate Fekete Points and Discrete Leja Points. These provide new computational tools for polynomial least squares and interpolation on multidimensional compact sets, with different applications such as numerical cubature, digital filtering, spectral and high-order methods for PDEs.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.m1003

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 1 : pp. 1–12

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Weakly admissible meshes Approximate Fekete points Discrete Leja points

  1. Bernstein type inequalities on star-like domains in $${\mathbb{R }}^d$$ with application to norming sets

    Kroó, András

    Bulletin of Mathematical Sciences, Vol. 3 (2013), Iss. 3 P.349

    https://doi.org/10.1007/s13373-013-0033-3 [Citations: 13]
  2. Fast empirical scenarios

    Multerer, Michael | Schneider, Paul | Sen, Rohan

    Journal of Computational Mathematics and Data Science, Vol. 12 (2024), Iss. P.100099

    https://doi.org/10.1016/j.jcmds.2024.100099 [Citations: 0]
  3. Polynomial approximation and quadrature on geographic rectangles

    Gentile, M. | Sommariva, A. | Vianello, M.

    Applied Mathematics and Computation, Vol. 297 (2017), Iss. P.159

    https://doi.org/10.1016/j.amc.2016.08.014 [Citations: 4]
  4. Optimal polynomial admissible meshes on some classes of compact subsets of Rd

    Piazzon, Federico

    Journal of Approximation Theory, Vol. 207 (2016), Iss. P.241

    https://doi.org/10.1016/j.jat.2016.02.015 [Citations: 14]
  5. Padua points and fake nodes for polynomial approximation: old, new and open problems

    De Marchı, Stefano

    Constructive Mathematical Analysis, Vol. 5 (2022), Iss. 1 P.14

    https://doi.org/10.33205/cma.1070020 [Citations: 0]
  6. Marcinkiewicz–Zygmund type results in multivariate domains

    De Marchi, S. | Kroó, A.

    Acta Mathematica Hungarica, Vol. 154 (2018), Iss. 1 P.69

    https://doi.org/10.1007/s10474-017-0769-4 [Citations: 5]
  7. NORMING SETS AND RELATED REMEZ-TYPE INEQUALITIES

    BRUDNYI, A. | YOMDIN, Y.

    Journal of the Australian Mathematical Society, Vol. 100 (2016), Iss. 2 P.163

    https://doi.org/10.1017/S1446788715000488 [Citations: 5]
  8. Polynomial fitting and interpolation on circular sections

    Sommariva, Alvise | Vianello, Marco

    Applied Mathematics and Computation, Vol. 258 (2015), Iss. P.410

    https://doi.org/10.1016/j.amc.2015.02.013 [Citations: 4]
  9. On Extremal Functions and V. Markov Type Polynomial Inequality for Certain Subsets of $${\mathbb {R}}^N$$

    Baran, Mirosław | Sroka, Grzegorz

    Constructive Approximation, Vol. 60 (2024), Iss. 1 P.135

    https://doi.org/10.1007/s00365-023-09653-1 [Citations: 0]
  10. An overdetermined B-spline collocation method for Poisson problems on complex domains

    Žitňan, P.

    Engineering Analysis with Boundary Elements, Vol. 37 (2013), Iss. 5 P.860

    https://doi.org/10.1016/j.enganabound.2013.03.002 [Citations: 1]
  11. Efficient characterization of phase space mapping in axially symmetric optical systems

    Barbero, Sergio | Portilla, Javier

    Journal of Optics, Vol. 20 (2018), Iss. 1 P.015603

    https://doi.org/10.1088/2040-8986/aa9bcb [Citations: 2]
  12. A New Quasi-Monte Carlo Technique Based on Nonnegative Least Squares and Approximate Fekete Points

    Bittante, Claudia | De Marchi, Stefano | Elefante, Giacomo

    Numerical Mathematics: Theory, Methods and Applications, Vol. 9 (2016), Iss. 4 P.640

    https://doi.org/10.4208/nmtma.2016.m1516 [Citations: 5]
  13. On the existence of optimal meshes in every convex domain on the plane

    Kroó, András

    Journal of Approximation Theory, Vol. 238 (2019), Iss. P.26

    https://doi.org/10.1016/j.jat.2017.02.004 [Citations: 7]
  14. Trivariate polynomial approximation on Lissajous curves

    Bos, L. | De Marchi, S. | Vianello, M.

    IMA Journal of Numerical Analysis, Vol. 37 (2017), Iss. 1 P.519

    https://doi.org/10.1093/imanum/drw013 [Citations: 7]
  15. Pluripotential Numerics

    Piazzon, Federico

    Constructive Approximation, Vol. 49 (2019), Iss. 2 P.227

    https://doi.org/10.1007/s00365-018-9441-7 [Citations: 5]
  16. Caratheodory-Tchakaloff Least Squares

    Piazzon, Federico | Sommariva, Alvise | Vianello, Marco

    2017 International Conference on Sampling Theory and Applications (SampTA), (2017), P.672

    https://doi.org/10.1109/SAMPTA.2017.8024337 [Citations: 8]
  17. Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder

    De Marchi, Stefano | Marchioro, Martina | Sommariva, Alvise

    Applied Mathematics and Computation, Vol. 218 (2012), Iss. 21 P.10617

    https://doi.org/10.1016/j.amc.2012.04.023 [Citations: 4]
  18. On optimal polynomial meshes

    Kroó, András

    Journal of Approximation Theory, Vol. 163 (2011), Iss. 9 P.1107

    https://doi.org/10.1016/j.jat.2011.03.007 [Citations: 31]
  19. On the generation of symmetric Lebesgue-like points in the triangle

    Rapetti, Francesca | Sommariva, Alvise | Vianello, Marco

    Journal of Computational and Applied Mathematics, Vol. 236 (2012), Iss. 18 P.4925

    https://doi.org/10.1016/j.cam.2011.11.023 [Citations: 8]
  20. Multivariate “needle” polynomials with application to norming sets and cubature formulas

    Kroó, A.

    Acta Mathematica Hungarica, Vol. 147 (2015), Iss. 1 P.46

    https://doi.org/10.1007/s10474-015-0507-8 [Citations: 5]
  21. Laplace Beltrami Operator in the Baran Metric and Pluripotential Equilibrium Measure: The Ball, the Simplex, and the Sphere

    Piazzon, Federico

    Computational Methods and Function Theory, Vol. 19 (2019), Iss. 4 P.547

    https://doi.org/10.1007/s40315-019-00286-9 [Citations: 0]