Chebyshev Spectral Methods and the Lane-Emden Problem

Chebyshev Spectral Methods and the Lane-Emden Problem

Year:    2011

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 2 : pp. 142–157

Abstract

The three-dimensional spherical polytropic Lane-Emden problem is $y_{rr}+(2/r) y_{r} + y^{m}=0, y(0)=1, y_{r}(0)=0$ where $m \in [0, 5]$ is a constant parameter. The domain is $r \in [0, \xi]$ where $\xi$ is the first root of $y(r)$. We recast this as a nonlinear eigenproblem, with three boundary conditions and $\xi$ as the eigenvalue allowing imposition of the extra boundary condition, by making the change of coordinate $x \equiv r/\xi$: $y_{xx}+(2/x) y_{x}+ \xi^{2} y^{m}=0, y(0)=1, y_{x}(0)=0,$ $y(1)=0$. We find that a Newton-Kantorovich iteration always converges from an $m$-independent starting point $y^{(0)}(x)=\cos([\pi/2] x), \xi^{(0)}=3$. We apply a Chebyshev pseudospectral method to discretize $x$. The Lane-Emden equation has branch point singularities at the endpoint $x=1$ whenever $m$ is not an integer; we show that the Chebyshev coefficients are $a_{n} \sim constant/n^{2m+5}$ as $n \rightarrow \infty$. However, a Chebyshev truncation of $N=100$ always gives at least ten decimal places of accuracy — much more accuracy when $m$ is an integer. The numerical algorithm is so simple that the complete code (in Maple) is given as a one page table.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.42s.2

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 2 : pp. 142–157

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Lane-Emden Chebyshev polynomial pseudospectral.

  1. Dynamical Tidal Love Numbers of Rapidly Rotating Planets and Stars

    Dewberry, Janosz W. | Lai, Dong

    The Astrophysical Journal, Vol. 925 (2022), Iss. 2 P.124

    https://doi.org/10.3847/1538-4357/ac3ede [Citations: 16]
  2. Two Efficient Computational Algorithms to Solve the Nonlinear Singular Lane-Emden Equations

    Parand, K. | Ghaderi-Kangavari, A. | Delkosh, M.

    Astrophysics, Vol. 63 (2020), Iss. 1 P.133

    https://doi.org/10.1007/s10511-020-09621-8 [Citations: 6]
  3. Solving nonlinear differential equations in astrophysics and fluid mechanics using the generalized pseudospectral method

    Delkhosh, Mehdi | Rahmanzadeh, Amanj | Shafiei, Seyyedeh-Fatemeh

    SeMA Journal, Vol. 78 (2021), Iss. 4 P.457

    https://doi.org/10.1007/s40324-021-00246-1 [Citations: 1]
  4. Impacts of zonal winds on planetary oscillations and Saturn ring seismology

    Dewberry, Janosz W | Mankovich, Christopher R | Fuller, Jim

    Monthly Notices of the Royal Astronomical Society, Vol. 516 (2022), Iss. 1 P.358

    https://doi.org/10.1093/mnras/stac1957 [Citations: 2]
  5. Spectral collocation solutions to systems of boundary layer type

    Gheorghiu, Călin-Ioan

    Numerical Algorithms, Vol. 73 (2016), Iss. 1 P.1

    https://doi.org/10.1007/s11075-015-0083-6 [Citations: 1]
  6. Mathematical Methods in Interdisciplinary Sciences

    Brain Activity Reconstruction by Finding a Source Parameter in an Inverse Problem

    Hadian‐Rasanan, Amir H. | Amani Rad, Jamal

    2020

    https://doi.org/10.1002/9781119585640.ch15 [Citations: 2]
  7. Solving the nonlinear Schlomilch’s integral equation arising in ionospheric problems

    Parand, Kourosh | Delkhosh, Mehdi

    Afrika Matematika, Vol. 28 (2017), Iss. 3-4 P.459

    https://doi.org/10.1007/s13370-016-0459-3 [Citations: 18]
  8. A Successive Linearization Method Approach to Solve Lane‐EmdenType of Equations

    Motsa, S. S. | Shateyi, S. | Nguyen Thoi, Trung

    Mathematical Problems in Engineering, Vol. 2012 (2012), Iss. 1

    https://doi.org/10.1155/2012/280702 [Citations: 6]
  9. A Deep Learning Neural Network Framework for Solving Singular Nonlinear Ordinary Differential Equations

    Venkatachalapathy, Pavithra | Mallikarjunaiah, S. M.

    International Journal of Applied and Computational Mathematics, Vol. 9 (2023), Iss. 5

    https://doi.org/10.1007/s40819-023-01563-x [Citations: 2]
  10. Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function

    Parand, K. | Hemami, M.

    International Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. 2 P.1053

    https://doi.org/10.1007/s40819-016-0161-z [Citations: 34]
  11. Spatial eigenvalue problems for stars in hydrostatic equilibrium: Generalized Lane–Emden equations as boundary value problems

    Van Gorder, Robert A | Fisher, Petra A

    Monthly Notices of the Royal Astronomical Society, Vol. 523 (2023), Iss. 2 P.2059

    https://doi.org/10.1093/mnras/stad1506 [Citations: 2]
  12. NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS

    PARAND, KOUROSH | DELKHOSH, MEHDI

    Journal of the Korea Society for Industrial and Applied Mathematics, Vol. 20 (2016), Iss. 3 P.261

    https://doi.org/10.12941/jksiam.2016.20.261 [Citations: 1]
  13. Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method

    Parand, Kourosh | Nikarya, Mehran | Rad, Jamal Amani

    Celestial Mechanics and Dynamical Astronomy, Vol. 116 (2013), Iss. 1 P.97

    https://doi.org/10.1007/s10569-013-9477-8 [Citations: 26]
  14. The Kidder Equation:

    Iacono, Roberto | Boyd,  John P.

    Studies in Applied Mathematics, Vol. 135 (2015), Iss. 1 P.63

    https://doi.org/10.1111/sapm.12073 [Citations: 10]
  15. A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions

    Parand, Kourosh | Mahdi Moayeri, Mohammad | Latifi, Sobhan | Delkhosh, Mehdi

    The European Physical Journal Plus, Vol. 132 (2017), Iss. 7

    https://doi.org/10.1140/epjp/i2017-11600-0 [Citations: 17]
  16. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

    Plestenjak, Bor | Gheorghiu, Călin I. | Hochstenbach, Michiel E.

    Journal of Computational Physics, Vol. 298 (2015), Iss. P.585

    https://doi.org/10.1016/j.jcp.2015.06.015 [Citations: 11]
  17. A neural network approach for solving nonlinear differential equations of Lane–Emden type

    Parand, K. | Aghaei, A. A. | Kiani, S. | Zadeh, T. Ilkhas | Khosravi, Z.

    Engineering with Computers, Vol. 40 (2024), Iss. 2 P.953

    https://doi.org/10.1007/s00366-023-01836-5 [Citations: 3]
  18. A Jacobi rational pseudospectral method for Lane–Emden initial value problems arising in astrophysics on a semi-infinite interval

    Doha, E. H. | Bhrawy, A. H. | Hafez, R. M. | Van Gorder, Robert A.

    Computational and Applied Mathematics, Vol. 33 (2014), Iss. 3 P.607

    https://doi.org/10.1007/s40314-013-0084-9 [Citations: 19]
  19. Learning nonlinear dynamics with behavior ordinary/partial/system of the differential equations: looking through the lens of orthogonal neural networks

    Omidi, M. | Arab, B. | Rasanan, A. H. Hadian | Rad, J. A. | Parand, K.

    Engineering with Computers, Vol. 38 (2022), Iss. S2 P.1635

    https://doi.org/10.1007/s00366-021-01297-8 [Citations: 11]
  20. RBF-DQ method for solving non-linear differential equations of Lane-Emden type

    Parand, K. | Hashemi, S.

    Ain Shams Engineering Journal, Vol. 9 (2018), Iss. 4 P.615

    https://doi.org/10.1016/j.asej.2016.03.010 [Citations: 19]
  21. Solving Volterra’s population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions

    Parand, Kourosh | Delkhosh, Mehdi

    Ricerche di Matematica, Vol. 65 (2016), Iss. 1 P.307

    https://doi.org/10.1007/s11587-016-0291-y [Citations: 34]
  22. The series expansion and Chebyshev collocation method for nonlinear singular two-point boundary value problems

    Wang, Tongke | Liu, Zhifang | Kong, Yiting

    Journal of Engineering Mathematics, Vol. 126 (2021), Iss. 1

    https://doi.org/10.1007/s10665-020-10077-0 [Citations: 4]
  23. Numerical study of a multidimensional dynamic quantum model arising in cognitive psychology especially in decision making

    Parand, K. | Moayeri, M. M. | Latifi, S. | Rad, J. A.

    The European Physical Journal Plus, Vol. 134 (2019), Iss. 3

    https://doi.org/10.1140/epjp/i2019-12511-8 [Citations: 6]
  24. Tidal Synchronization Trapping in Stars and Planets with Convective Envelopes

    Dewberry, Janosz W.

    The Astrophysical Journal, Vol. 966 (2024), Iss. 2 P.180

    https://doi.org/10.3847/1538-4357/ad344d [Citations: 1]
  25. Series solution and Chebyshev collocation method for the initial value problem of Emden-Fowler equation

    Wang, Yuxuan | Wang, Tongke | Gao, Guang-hua

    International Journal of Computer Mathematics, Vol. 100 (2023), Iss. 2 P.233

    https://doi.org/10.1080/00207160.2022.2113522 [Citations: 0]
  26. GEPINN: An innovative hybrid method for a symbolic solution to the Lane–Emden type equation based on grammatical evolution and physics-informed neural networks

    Dana Mazraeh, Hassan | Parand, Kourosh

    Astronomy and Computing, Vol. 48 (2024), Iss. P.100846

    https://doi.org/10.1016/j.ascom.2024.100846 [Citations: 0]
  27. Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems

    The Polytrophic Spheres of the Nonlinear Lane—Emden—Type Equation Arising in Astrophysics

    Marinca, Vasile | Herisanu, Nicolae | Marinca, Bogdan

    2021

    https://doi.org/10.1007/978-3-030-75653-6_28 [Citations: 1]
  28. Accurate calculation of the solutions to the Thomas–Fermi equations

    Amore, Paolo | Boyd, John P. | Fernández, Francisco M.

    Applied Mathematics and Computation, Vol. 232 (2014), Iss. P.929

    https://doi.org/10.1016/j.amc.2014.01.137 [Citations: 11]
  29. Optimal homotopy asymptotic method for polytrophic spheres of the Lane-Emden type equation

    Marinca, Vasile | Herisanu, Nicolae

    CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST), (2019), P.300003

    https://doi.org/10.1063/1.5114303 [Citations: 18]
  30. Computational Techniques for Accurate Solutions of Astrophysical Problems Using Transform-Based Collocation

    Adewumi, A. O. | Akindeinde, S. O. | Lebelo, R. S.

    International Journal of Applied Mathematics, Computational Science and Systems Engineering, Vol. 6 (2024), Iss. P.119

    https://doi.org/10.37394/232026.2024.6.11 [Citations: 0]