Year: 2011
Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 2 : pp. 142–157
Abstract
The three-dimensional spherical polytropic Lane-Emden problem is $y_{rr}+(2/r) y_{r} + y^{m}=0, y(0)=1, y_{r}(0)=0$ where $m \in [0, 5]$ is a constant parameter. The domain is $r \in [0, \xi]$ where $\xi$ is the first root of $y(r)$. We recast this as a nonlinear eigenproblem, with three boundary conditions and $\xi$ as the eigenvalue allowing imposition of the extra boundary condition, by making the change of coordinate $x \equiv r/\xi$: $y_{xx}+(2/x) y_{x}+ \xi^{2} y^{m}=0, y(0)=1, y_{x}(0)=0,$ $y(1)=0$. We find that a Newton-Kantorovich iteration always converges from an $m$-independent starting point $y^{(0)}(x)=\cos([\pi/2] x), \xi^{(0)}=3$. We apply a Chebyshev pseudospectral method to discretize $x$. The Lane-Emden equation has branch point singularities at the endpoint $x=1$ whenever $m$ is not an integer; we show that the Chebyshev coefficients are $a_{n} \sim constant/n^{2m+5}$ as $n \rightarrow \infty$. However, a Chebyshev truncation of $N=100$ always gives at least ten decimal places of accuracy — much more accuracy when $m$ is an integer. The numerical algorithm is so simple that the complete code (in Maple) is given as a one page table.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2011.42s.2
Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 2 : pp. 142–157
Published online: 2011-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 16
Keywords: Lane-Emden Chebyshev polynomial pseudospectral.
-
Dynamical Tidal Love Numbers of Rapidly Rotating Planets and Stars
Dewberry, Janosz W. | Lai, DongThe Astrophysical Journal, Vol. 925 (2022), Iss. 2 P.124
https://doi.org/10.3847/1538-4357/ac3ede [Citations: 16] -
Two Efficient Computational Algorithms to Solve the Nonlinear Singular Lane-Emden Equations
Parand, K. | Ghaderi-Kangavari, A. | Delkosh, M.Astrophysics, Vol. 63 (2020), Iss. 1 P.133
https://doi.org/10.1007/s10511-020-09621-8 [Citations: 6] -
Solving nonlinear differential equations in astrophysics and fluid mechanics using the generalized pseudospectral method
Delkhosh, Mehdi | Rahmanzadeh, Amanj | Shafiei, Seyyedeh-FatemehSeMA Journal, Vol. 78 (2021), Iss. 4 P.457
https://doi.org/10.1007/s40324-021-00246-1 [Citations: 1] -
Impacts of zonal winds on planetary oscillations and Saturn ring seismology
Dewberry, Janosz W | Mankovich, Christopher R | Fuller, JimMonthly Notices of the Royal Astronomical Society, Vol. 516 (2022), Iss. 1 P.358
https://doi.org/10.1093/mnras/stac1957 [Citations: 2] -
Spectral collocation solutions to systems of boundary layer type
Gheorghiu, Călin-Ioan
Numerical Algorithms, Vol. 73 (2016), Iss. 1 P.1
https://doi.org/10.1007/s11075-015-0083-6 [Citations: 1] -
Mathematical Methods in Interdisciplinary Sciences
Brain Activity Reconstruction by Finding a Source Parameter in an Inverse Problem
Hadian‐Rasanan, Amir H. | Amani Rad, Jamal2020
https://doi.org/10.1002/9781119585640.ch15 [Citations: 2] -
Solving the nonlinear Schlomilch’s integral equation arising in ionospheric problems
Parand, Kourosh | Delkhosh, MehdiAfrika Matematika, Vol. 28 (2017), Iss. 3-4 P.459
https://doi.org/10.1007/s13370-016-0459-3 [Citations: 18] -
A Successive Linearization Method Approach to Solve Lane‐EmdenType of Equations
Motsa, S. S. | Shateyi, S. | Nguyen Thoi, TrungMathematical Problems in Engineering, Vol. 2012 (2012), Iss. 1
https://doi.org/10.1155/2012/280702 [Citations: 6] -
A Deep Learning Neural Network Framework for Solving Singular Nonlinear Ordinary Differential Equations
Venkatachalapathy, Pavithra | Mallikarjunaiah, S. M.International Journal of Applied and Computational Mathematics, Vol. 9 (2023), Iss. 5
https://doi.org/10.1007/s40819-023-01563-x [Citations: 2] -
Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function
Parand, K. | Hemami, M.International Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. 2 P.1053
https://doi.org/10.1007/s40819-016-0161-z [Citations: 34] -
Spatial eigenvalue problems for stars in hydrostatic equilibrium: Generalized Lane–Emden equations as boundary value problems
Van Gorder, Robert A | Fisher, Petra AMonthly Notices of the Royal Astronomical Society, Vol. 523 (2023), Iss. 2 P.2059
https://doi.org/10.1093/mnras/stad1506 [Citations: 2] -
NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS
PARAND, KOUROSH | DELKHOSH, MEHDIJournal of the Korea Society for Industrial and Applied Mathematics, Vol. 20 (2016), Iss. 3 P.261
https://doi.org/10.12941/jksiam.2016.20.261 [Citations: 1] -
Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method
Parand, Kourosh | Nikarya, Mehran | Rad, Jamal AmaniCelestial Mechanics and Dynamical Astronomy, Vol. 116 (2013), Iss. 1 P.97
https://doi.org/10.1007/s10569-013-9477-8 [Citations: 26] -
The Kidder Equation:
Iacono, Roberto | Boyd, John P.Studies in Applied Mathematics, Vol. 135 (2015), Iss. 1 P.63
https://doi.org/10.1111/sapm.12073 [Citations: 10] -
A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions
Parand, Kourosh | Mahdi Moayeri, Mohammad | Latifi, Sobhan | Delkhosh, MehdiThe European Physical Journal Plus, Vol. 132 (2017), Iss. 7
https://doi.org/10.1140/epjp/i2017-11600-0 [Citations: 17] -
Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems
Plestenjak, Bor | Gheorghiu, Călin I. | Hochstenbach, Michiel E.Journal of Computational Physics, Vol. 298 (2015), Iss. P.585
https://doi.org/10.1016/j.jcp.2015.06.015 [Citations: 11] -
A neural network approach for solving nonlinear differential equations of Lane–Emden type
Parand, K. | Aghaei, A. A. | Kiani, S. | Zadeh, T. Ilkhas | Khosravi, Z.Engineering with Computers, Vol. 40 (2024), Iss. 2 P.953
https://doi.org/10.1007/s00366-023-01836-5 [Citations: 3] -
A Jacobi rational pseudospectral method for Lane–Emden initial value problems arising in astrophysics on a semi-infinite interval
Doha, E. H. | Bhrawy, A. H. | Hafez, R. M. | Van Gorder, Robert A.Computational and Applied Mathematics, Vol. 33 (2014), Iss. 3 P.607
https://doi.org/10.1007/s40314-013-0084-9 [Citations: 19] -
Learning nonlinear dynamics with behavior ordinary/partial/system of the differential equations: looking through the lens of orthogonal neural networks
Omidi, M. | Arab, B. | Rasanan, A. H. Hadian | Rad, J. A. | Parand, K.Engineering with Computers, Vol. 38 (2022), Iss. S2 P.1635
https://doi.org/10.1007/s00366-021-01297-8 [Citations: 11] -
RBF-DQ method for solving non-linear differential equations of Lane-Emden type
Parand, K. | Hashemi, S.Ain Shams Engineering Journal, Vol. 9 (2018), Iss. 4 P.615
https://doi.org/10.1016/j.asej.2016.03.010 [Citations: 19] -
Solving Volterra’s population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions
Parand, Kourosh | Delkhosh, MehdiRicerche di Matematica, Vol. 65 (2016), Iss. 1 P.307
https://doi.org/10.1007/s11587-016-0291-y [Citations: 34] -
The series expansion and Chebyshev collocation method for nonlinear singular two-point boundary value problems
Wang, Tongke | Liu, Zhifang | Kong, YitingJournal of Engineering Mathematics, Vol. 126 (2021), Iss. 1
https://doi.org/10.1007/s10665-020-10077-0 [Citations: 4] -
Numerical study of a multidimensional dynamic quantum model arising in cognitive psychology especially in decision making
Parand, K. | Moayeri, M. M. | Latifi, S. | Rad, J. A.The European Physical Journal Plus, Vol. 134 (2019), Iss. 3
https://doi.org/10.1140/epjp/i2019-12511-8 [Citations: 6] -
Tidal Synchronization Trapping in Stars and Planets with Convective Envelopes
Dewberry, Janosz W.
The Astrophysical Journal, Vol. 966 (2024), Iss. 2 P.180
https://doi.org/10.3847/1538-4357/ad344d [Citations: 1] -
Series solution and Chebyshev collocation method for the initial value problem of Emden-Fowler equation
Wang, Yuxuan | Wang, Tongke | Gao, Guang-huaInternational Journal of Computer Mathematics, Vol. 100 (2023), Iss. 2 P.233
https://doi.org/10.1080/00207160.2022.2113522 [Citations: 0] -
GEPINN: An innovative hybrid method for a symbolic solution to the Lane–Emden type equation based on grammatical evolution and physics-informed neural networks
Dana Mazraeh, Hassan | Parand, KouroshAstronomy and Computing, Vol. 48 (2024), Iss. P.100846
https://doi.org/10.1016/j.ascom.2024.100846 [Citations: 0] -
Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems
The Polytrophic Spheres of the Nonlinear Lane—Emden—Type Equation Arising in Astrophysics
Marinca, Vasile | Herisanu, Nicolae | Marinca, Bogdan2021
https://doi.org/10.1007/978-3-030-75653-6_28 [Citations: 1] -
Accurate calculation of the solutions to the Thomas–Fermi equations
Amore, Paolo | Boyd, John P. | Fernández, Francisco M.Applied Mathematics and Computation, Vol. 232 (2014), Iss. P.929
https://doi.org/10.1016/j.amc.2014.01.137 [Citations: 11] -
Optimal homotopy asymptotic method for polytrophic spheres of the Lane-Emden type equation
Marinca, Vasile | Herisanu, NicolaeCENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST), (2019), P.300003
https://doi.org/10.1063/1.5114303 [Citations: 18] -
Computational Techniques for Accurate Solutions of Astrophysical Problems Using Transform-Based Collocation
Adewumi, A. O. | Akindeinde, S. O. | Lebelo, R. S.International Journal of Applied Mathematics, Computational Science and Systems Engineering, Vol. 6 (2024), Iss. P.119
https://doi.org/10.37394/232026.2024.6.11 [Citations: 0]