Discrete Maximum Principle and a Delaunay-Type Mesh Condition for Linear Finite Element Approximations of Two-Dimensional Anisotropic Diffusion Problems

Discrete Maximum Principle and a Delaunay-Type Mesh Condition for Linear Finite Element Approximations of Two-Dimensional Anisotropic Diffusion Problems

Year:    2011

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 319–334

Abstract

A Delaunay-type mesh condition is developed for a linear finite element approximation of two-dimensional anisotropic diffusion problems to satisfy a discrete maximum principle. The condition is weaker than the existing anisotropic non-obtuse angle condition and reduces to the well known Delaunay condition for the special case with the identity diffusion matrix. Numerical results are presented to verify the theoretical findings.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.m1024

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 319–334

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Anisotropic diffusion discrete maximum principle finite element mesh generation Delaunay triangulation Delaunay condition.

  1. A Numerical Assessment of Finite Element Discretizations for Convection-Diffusion-Reaction Equations Satisfying Discrete Maximum Principles

    John, Volker | Knobloch, Petr | Pártl, Ondřej

    Computational Methods in Applied Mathematics, Vol. 23 (2023), Iss. 4 P.969

    https://doi.org/10.1515/cmam-2022-0125 [Citations: 4]
  2. An efficient high-order numerical solver for diffusion equations with strong anisotropy

    Green, David | Hu, Xiaozhe | Lore, Jeremy | Mu, Lin | Stowell, Mark L.

    Computer Physics Communications, Vol. 276 (2022), Iss. P.108333

    https://doi.org/10.1016/j.cpc.2022.108333 [Citations: 7]
  3. The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations

    Lu, Changna | Huang, Weizhang | Van Vleck, Erik S.

    Journal of Computational Physics, Vol. 242 (2013), Iss. P.24

    https://doi.org/10.1016/j.jcp.2013.01.052 [Citations: 42]
  4. Sparse Non-negative Stencils for Anisotropic Diffusion

    Fehrenbach, Jérôme | Mirebeau, Jean-Marie

    Journal of Mathematical Imaging and Vision, Vol. 49 (2014), Iss. 1 P.123

    https://doi.org/10.1007/s10851-013-0446-3 [Citations: 40]
  5. A nodally bound-preserving finite element method

    Barrenechea, Gabriel R | Georgoulis, Emmanuil H | Pryer, Tristan | Veeser, Andreas

    IMA Journal of Numerical Analysis, Vol. 44 (2024), Iss. 4 P.2198

    https://doi.org/10.1093/imanum/drad055 [Citations: 2]
  6. A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation

    Sheng, Zhiqiang | Yuan, Guangwei

    Journal of Scientific Computing, Vol. 68 (2016), Iss. 2 P.521

    https://doi.org/10.1007/s10915-015-0148-7 [Citations: 17]
  7. A novel monotone finite volume element scheme for diffusion equations

    Nie, Cunyun | Shu, Shi | Liu, Menghuan

    Journal of Computational and Applied Mathematics, Vol. 414 (2022), Iss. P.114458

    https://doi.org/10.1016/j.cam.2022.114458 [Citations: 3]
  8. Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems

    Lu, Changna | Huang, Weizhang | Qiu, Jianxian

    Numerische Mathematik, Vol. 127 (2014), Iss. 3 P.515

    https://doi.org/10.1007/s00211-013-0595-8 [Citations: 30]
  9. Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations

    Barrenechea, Gabriel R. | John, Volker | Knobloch, Petr

    SIAM Review, Vol. 66 (2024), Iss. 1 P.3

    https://doi.org/10.1137/22M1488934 [Citations: 13]
  10. Computational identification of the lowest space-wise dependent coefficient of a parabolic equation

    Vabishchevich, Petr N.

    Applied Mathematical Modelling, Vol. 65 (2019), Iss. P.361

    https://doi.org/10.1016/j.apm.2018.08.024 [Citations: 5]
  11. A monotone finite volume element scheme for diffusion equations on triangular grids

    Nie, Cunyun | Yu, Haiyuan

    Computers & Mathematics with Applications, Vol. 105 (2022), Iss. P.1

    https://doi.org/10.1016/j.camwa.2021.11.011 [Citations: 3]
  12. Anisotropic Mesh Adaptation for 3D Anisotropic Diffusion Problems with Application to Fractured Reservoir Simulation

    Li, Xianping | Huang, Weizhang

    Numerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 4 P.913

    https://doi.org/10.4208/nmtma.2017.m1625 [Citations: 1]
  13. Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators

    Huang, Weizhang

    Journal of Computational Physics, Vol. 274 (2014), Iss. P.230

    https://doi.org/10.1016/j.jcp.2014.06.012 [Citations: 6]
  14. Computational Identification of the Time Dependence of the Right-Hand Side of a Hyperbolic Equation

    Vabishchevich, P. N.

    Computational Mathematics and Mathematical Physics, Vol. 59 (2019), Iss. 9 P.1475

    https://doi.org/10.1134/S096554251909015X [Citations: 3]
  15. Construction of Nonlinear Weighted Method for Finite Volume Schemes Preserving Maximum Principle

    Sheng, Zhiqiang | Yuan, Guangwei

    SIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 1 P.A607

    https://doi.org/10.1137/16M1098000 [Citations: 20]
  16. Convex hull property and maximum principle for finite element minimisers of general convex functionals

    Diening, Lars | Kreuzer, Christian | Schwarzacher, Sebastian

    Numerische Mathematik, Vol. 124 (2013), Iss. 4 P.685

    https://doi.org/10.1007/s00211-013-0527-7 [Citations: 9]
  17. A parallel finite volume scheme preserving positivity for diffusion equation on distorted meshes

    Sheng, Zhiqiang | Yue, Jingyan | Yuan, Guangwei

    Numerical Methods for Partial Differential Equations, Vol. 33 (2017), Iss. 6 P.2159

    https://doi.org/10.1002/num.22185 [Citations: 4]
  18. Anisotropic mesh quality measures and adaptation for polygonal meshes

    Huang, Weizhang | Wang, Yanqiu

    Journal of Computational Physics, Vol. 410 (2020), Iss. P.109368

    https://doi.org/10.1016/j.jcp.2020.109368 [Citations: 4]
  19. An Efficient High-Order Solver for Diffusion Equations with Strong Anisotropy on Non-Anisotropy-Aligned Meshes

    Green, David | Hu, Xiaozhe | Lore, Jeremy | Mu, Lin | Stowell, Mark L.

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 2 P.S199

    https://doi.org/10.1137/22M1500162 [Citations: 0]
  20. Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes

    Sheng, Zhiqiang | Yuan, Guangwei

    Science China Mathematics, Vol. 65 (2022), Iss. 11 P.2379

    https://doi.org/10.1007/s11425-021-1931-3 [Citations: 4]
  21. Maximum principle for the finite element solution of time‐dependent anisotropic diffusion problems

    Li, Xianping | Huang, Weizhang

    Numerical Methods for Partial Differential Equations, Vol. 29 (2013), Iss. 6 P.1963

    https://doi.org/10.1002/num.21784 [Citations: 15]
  22. An improvement of the two-point flux approximation scheme on polygonal meshes

    Chang, Lina | Sheng, Zhiqiang | Yuan, Guangwei

    Journal of Computational Physics, Vol. 392 (2019), Iss. P.187

    https://doi.org/10.1016/j.jcp.2019.04.045 [Citations: 6]
  23. A monotone finite volume element scheme for diffusion equations on arbitrary polygonal grids

    Nie, Cunyun | Fang, Jianglin | Shu, Shi

    Computers & Mathematics with Applications, Vol. 153 (2024), Iss. P.225

    https://doi.org/10.1016/j.camwa.2023.11.030 [Citations: 0]
  24. Metric tensors for the interpolation error and its gradient inLpnorm

    Xie, Hehu | Yin, Xiaobo

    Journal of Computational Physics, Vol. 256 (2014), Iss. P.543

    https://doi.org/10.1016/j.jcp.2013.09.008 [Citations: 3]
  25. A nonlinear scheme preserving maximum principle for heterogeneous anisotropic diffusion equation

    Sheng, Zhiqiang | Yuan, Guangwei

    Journal of Computational and Applied Mathematics, Vol. 436 (2024), Iss. P.115438

    https://doi.org/10.1016/j.cam.2023.115438 [Citations: 0]