Discrete Maximum Principle and a Delaunay-Type Mesh Condition for Linear Finite Element Approximations of Two-Dimensional Anisotropic Diffusion Problems
Year: 2011
Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 319–334
Abstract
A Delaunay-type mesh condition is developed for a linear finite element approximation of two-dimensional anisotropic diffusion problems to satisfy a discrete maximum principle. The condition is weaker than the existing anisotropic non-obtuse angle condition and reduces to the well known Delaunay condition for the special case with the identity diffusion matrix. Numerical results are presented to verify the theoretical findings.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2011.m1024
Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 319–334
Published online: 2011-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 16
Keywords: Anisotropic diffusion discrete maximum principle finite element mesh generation Delaunay triangulation Delaunay condition.
-
A Numerical Assessment of Finite Element Discretizations for Convection-Diffusion-Reaction Equations Satisfying Discrete Maximum Principles
John, Volker | Knobloch, Petr | Pártl, OndřejComputational Methods in Applied Mathematics, Vol. 23 (2023), Iss. 4 P.969
https://doi.org/10.1515/cmam-2022-0125 [Citations: 4] -
An efficient high-order numerical solver for diffusion equations with strong anisotropy
Green, David | Hu, Xiaozhe | Lore, Jeremy | Mu, Lin | Stowell, Mark L.Computer Physics Communications, Vol. 276 (2022), Iss. P.108333
https://doi.org/10.1016/j.cpc.2022.108333 [Citations: 7] -
The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations
Lu, Changna | Huang, Weizhang | Van Vleck, Erik S.Journal of Computational Physics, Vol. 242 (2013), Iss. P.24
https://doi.org/10.1016/j.jcp.2013.01.052 [Citations: 42] -
Sparse Non-negative Stencils for Anisotropic Diffusion
Fehrenbach, Jérôme | Mirebeau, Jean-MarieJournal of Mathematical Imaging and Vision, Vol. 49 (2014), Iss. 1 P.123
https://doi.org/10.1007/s10851-013-0446-3 [Citations: 40] -
A nodally bound-preserving finite element method
Barrenechea, Gabriel R | Georgoulis, Emmanuil H | Pryer, Tristan | Veeser, AndreasIMA Journal of Numerical Analysis, Vol. 44 (2024), Iss. 4 P.2198
https://doi.org/10.1093/imanum/drad055 [Citations: 2] -
A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation
Sheng, Zhiqiang | Yuan, GuangweiJournal of Scientific Computing, Vol. 68 (2016), Iss. 2 P.521
https://doi.org/10.1007/s10915-015-0148-7 [Citations: 17] -
A novel monotone finite volume element scheme for diffusion equations
Nie, Cunyun | Shu, Shi | Liu, MenghuanJournal of Computational and Applied Mathematics, Vol. 414 (2022), Iss. P.114458
https://doi.org/10.1016/j.cam.2022.114458 [Citations: 3] -
Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems
Lu, Changna | Huang, Weizhang | Qiu, JianxianNumerische Mathematik, Vol. 127 (2014), Iss. 3 P.515
https://doi.org/10.1007/s00211-013-0595-8 [Citations: 30] -
Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
Barrenechea, Gabriel R. | John, Volker | Knobloch, PetrSIAM Review, Vol. 66 (2024), Iss. 1 P.3
https://doi.org/10.1137/22M1488934 [Citations: 13] -
Computational identification of the lowest space-wise dependent coefficient of a parabolic equation
Vabishchevich, Petr N.
Applied Mathematical Modelling, Vol. 65 (2019), Iss. P.361
https://doi.org/10.1016/j.apm.2018.08.024 [Citations: 5] -
A monotone finite volume element scheme for diffusion equations on triangular grids
Nie, Cunyun | Yu, HaiyuanComputers & Mathematics with Applications, Vol. 105 (2022), Iss. P.1
https://doi.org/10.1016/j.camwa.2021.11.011 [Citations: 3] -
Anisotropic Mesh Adaptation for 3D Anisotropic Diffusion Problems with Application to Fractured Reservoir Simulation
Li, Xianping | Huang, WeizhangNumerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 4 P.913
https://doi.org/10.4208/nmtma.2017.m1625 [Citations: 1] -
Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators
Huang, Weizhang
Journal of Computational Physics, Vol. 274 (2014), Iss. P.230
https://doi.org/10.1016/j.jcp.2014.06.012 [Citations: 6] -
Computational Identification of the Time Dependence of the Right-Hand Side of a Hyperbolic Equation
Vabishchevich, P. N.
Computational Mathematics and Mathematical Physics, Vol. 59 (2019), Iss. 9 P.1475
https://doi.org/10.1134/S096554251909015X [Citations: 3] -
Construction of Nonlinear Weighted Method for Finite Volume Schemes Preserving Maximum Principle
Sheng, Zhiqiang | Yuan, GuangweiSIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 1 P.A607
https://doi.org/10.1137/16M1098000 [Citations: 20] -
Convex hull property and maximum principle for finite element minimisers of general convex functionals
Diening, Lars | Kreuzer, Christian | Schwarzacher, SebastianNumerische Mathematik, Vol. 124 (2013), Iss. 4 P.685
https://doi.org/10.1007/s00211-013-0527-7 [Citations: 9] -
A parallel finite volume scheme preserving positivity for diffusion equation on distorted meshes
Sheng, Zhiqiang | Yue, Jingyan | Yuan, GuangweiNumerical Methods for Partial Differential Equations, Vol. 33 (2017), Iss. 6 P.2159
https://doi.org/10.1002/num.22185 [Citations: 4] -
Anisotropic mesh quality measures and adaptation for polygonal meshes
Huang, Weizhang | Wang, YanqiuJournal of Computational Physics, Vol. 410 (2020), Iss. P.109368
https://doi.org/10.1016/j.jcp.2020.109368 [Citations: 4] -
An Efficient High-Order Solver for Diffusion Equations with Strong Anisotropy on Non-Anisotropy-Aligned Meshes
Green, David | Hu, Xiaozhe | Lore, Jeremy | Mu, Lin | Stowell, Mark L.SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 2 P.S199
https://doi.org/10.1137/22M1500162 [Citations: 0] -
Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes
Sheng, Zhiqiang | Yuan, GuangweiScience China Mathematics, Vol. 65 (2022), Iss. 11 P.2379
https://doi.org/10.1007/s11425-021-1931-3 [Citations: 4] -
Maximum principle for the finite element solution of time‐dependent anisotropic diffusion problems
Li, Xianping | Huang, WeizhangNumerical Methods for Partial Differential Equations, Vol. 29 (2013), Iss. 6 P.1963
https://doi.org/10.1002/num.21784 [Citations: 15] -
An improvement of the two-point flux approximation scheme on polygonal meshes
Chang, Lina | Sheng, Zhiqiang | Yuan, GuangweiJournal of Computational Physics, Vol. 392 (2019), Iss. P.187
https://doi.org/10.1016/j.jcp.2019.04.045 [Citations: 6] -
A monotone finite volume element scheme for diffusion equations on arbitrary polygonal grids
Nie, Cunyun | Fang, Jianglin | Shu, ShiComputers & Mathematics with Applications, Vol. 153 (2024), Iss. P.225
https://doi.org/10.1016/j.camwa.2023.11.030 [Citations: 0] -
Metric tensors for the interpolation error and its gradient inLpnorm
Xie, Hehu | Yin, XiaoboJournal of Computational Physics, Vol. 256 (2014), Iss. P.543
https://doi.org/10.1016/j.jcp.2013.09.008 [Citations: 3] -
A nonlinear scheme preserving maximum principle for heterogeneous anisotropic diffusion equation
Sheng, Zhiqiang | Yuan, GuangweiJournal of Computational and Applied Mathematics, Vol. 436 (2024), Iss. P.115438
https://doi.org/10.1016/j.cam.2023.115438 [Citations: 0]