Extrapolation of Mixed Finite Element Approximations for the Maxwell Eigenvalue Problem

Extrapolation of Mixed Finite Element Approximations for the Maxwell Eigenvalue Problem

Year:    2011

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 379–395

Abstract

In this paper, a general method to derive asymptotic error expansion formulas for the mixed finite element approximations of the Maxwell eigenvalue problem is established. Abstract lemmas for the error of the eigenvalue approximations are obtained. Based on the asymptotic error expansion formulas, the Richardson extrapolation method is employed to improve the accuracy of the approximations for the eigenvalues of the Maxwell system from $\mathcal{O}(h^2)$ to $\mathcal{O}(h^4)$ when applying the lowest order Nédélec mixed finite element and a nonconforming mixed finite element. To our best knowledge, this is the first superconvergence result of the Maxwell eigenvalue problem by the extrapolation of the mixed finite element approximation. Numerical experiments are provided to demonstrate the theoretical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2011.m1018

Numerical Mathematics: Theory, Methods and Applications, Vol. 4 (2011), Iss. 3 : pp. 379–395

Published online:    2011-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Maxwell eigenvalue problem mixed finite element asymptotic error expansion Richardson extrapolation.