Year: 2010
Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 295–337
Abstract
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2010.33.3
Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 295–337
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 43
Keywords: Absorbing boundary conditions hyperbolic system Engquist and Majda approach strict well-posedness GKS-stability.
-
Transparent quantum graphs
Yusupov, J.R. | Sabirov, K.K. | Ehrhardt, M. | Matrasulov, D.U.Physics Letters A, Vol. 383 (2019), Iss. 20 P.2382
https://doi.org/10.1016/j.physleta.2019.04.059 [Citations: 21] -
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Sabirov, K. K. | Yusupov, J. R. | Aripov, M. M. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 103 (2021), Iss. 4
https://doi.org/10.1103/PhysRevE.103.043305 [Citations: 10] -
Penalty Sponge Layers (PSL) for hyperbolic systems. General formulation, well-posedness and stability
Basset, Sihem | Benkamra, Zohra | Tlemcani, MounirJournal of Computational Physics, Vol. 510 (2024), Iss. P.113087
https://doi.org/10.1016/j.jcp.2024.113087 [Citations: 0] -
Transparent boundary condition for simulating rogue wave solutions in the nonlinear Schrödinger equation
Zheng, Chenxi | Tang, ShaoqiangPhysical Review E, Vol. 106 (2022), Iss. 5
https://doi.org/10.1103/PhysRevE.106.055302 [Citations: 2] -
Exact Non-reflecting Boundary Conditions Revisited: Well-Posedness and Stability
Eriksson, Sofia | Nordström, JanFoundations of Computational Mathematics, Vol. 17 (2017), Iss. 4 P.957
https://doi.org/10.1007/s10208-016-9310-3 [Citations: 11] -
Comparison of Fast Shallow-Water Schemes on Real-World Floods
Horváth, Zsolt | Buttinger-Kreuzhuber, Andreas | Konev, Artem | Cornel, Daniel | Komma, Jürgen | Blöschl, Günter | Noelle, Sebastian | Waser, JürgenJournal of Hydraulic Engineering, Vol. 146 (2020), Iss. 1
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001657 [Citations: 12] -
Transparent nonlinear networks
Yusupov, J. R. | Sabirov, K. K. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 100 (2019), Iss. 3
https://doi.org/10.1103/PhysRevE.100.032204 [Citations: 16] -
On transparent vertex boundary conditions for quantum graphs
Lavrukhine, A. A. | Popov, A. I. | Popov, I. Y.Indian Journal of Physics, Vol. 97 (2023), Iss. 7 P.2095
https://doi.org/10.1007/s12648-022-02558-y [Citations: 0] -
A stable implementation measure of multi-transmitting formula in the numerical simulation of wave motion
Su, Jie | Zhou, Zhenghua | Li, Yuandong | Hao, Bing | Dong, Qing | Li, Xiaojun | Khitab, AnwarPLOS ONE, Vol. 15 (2020), Iss. 12 P.e0243979
https://doi.org/10.1371/journal.pone.0243979 [Citations: 3] -
Concept for a one-dimensional discrete artificial boundary condition for the lattice Boltzmann method
Heubes, Daniel | Bartel, Andreas | Ehrhardt, MatthiasComputers & Mathematics with Applications, Vol. 70 (2015), Iss. 10 P.2316
https://doi.org/10.1016/j.camwa.2015.08.030 [Citations: 1] -
Ghost solutions with centered schemes for one-dimensional transport equations with Neumann boundary conditions
Inglard, Mélanie | Lagoutière, Frédéric | Rugh, Hans HenrikAnnales de la Faculté des sciences de Toulouse : Mathématiques, Vol. 29 (2020), Iss. 4 P.927
https://doi.org/10.5802/afst.1650 [Citations: 0] -
Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis
Coulombel, Jean-François
Annales de la Faculté des sciences de Toulouse : Mathématiques, Vol. 28 (2019), Iss. 2 P.259
https://doi.org/10.5802/afst.1600 [Citations: 3] -
Artificial boundary method for the Zakharov-Rubenchik equations
Li, Hongwei | Zhang, XiangyuNumerical Algorithms, Vol. 97 (2024), Iss. 3 P.1017
https://doi.org/10.1007/s11075-023-01739-y [Citations: 0] -
Characteristic boundary conditions in the lattice Boltzmann method for fluid and gas dynamics
Heubes, Daniel | Bartel, Andreas | Ehrhardt, MatthiasJournal of Computational and Applied Mathematics, Vol. 262 (2014), Iss. P.51
https://doi.org/10.1016/j.cam.2013.09.019 [Citations: 25] -
On the stability of totally upwind schemes for the hyperbolic initial boundary value problem
Boutin, Benjamin | Le Barbenchon, Pierre | Seguin, NicolasIMA Journal of Numerical Analysis, Vol. 44 (2024), Iss. 2 P.1211
https://doi.org/10.1093/imanum/drad040 [Citations: 1] -
Micro-Differential Boundary Conditions Modelling the Absorption of Acoustic Waves by 2D Arbitrarily-Shaped Convex Surfaces
Barucq, Hélène | Diaz, Julien | Duprat, VéroniqueCommunications in Computational Physics, Vol. 11 (2012), Iss. 2 P.674
https://doi.org/10.4208/cicp.311209.260411s [Citations: 8] -
Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures
Yusupov, J. R. | Sabirov, K. K. | Asadov, Q. U. | Ehrhardt, M. | Matrasulov, D. U.Physical Review E, Vol. 101 (2020), Iss. 6
https://doi.org/10.1103/PhysRevE.101.062208 [Citations: 11]