Absorbing Boundary Conditions for Hyperbolic Systems

Absorbing Boundary Conditions for Hyperbolic Systems

Year:    2010

Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 295–337

Abstract

This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2010.33.3

Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 295–337

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    43

Keywords:    Absorbing boundary conditions hyperbolic system Engquist and Majda approach strict well-posedness GKS-stability.

  1. Transparent quantum graphs

    Yusupov, J.R. | Sabirov, K.K. | Ehrhardt, M. | Matrasulov, D.U.

    Physics Letters A, Vol. 383 (2019), Iss. 20 P.2382

    https://doi.org/10.1016/j.physleta.2019.04.059 [Citations: 21]
  2. Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions

    Sabirov, K. K. | Yusupov, J. R. | Aripov, M. M. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 103 (2021), Iss. 4

    https://doi.org/10.1103/PhysRevE.103.043305 [Citations: 10]
  3. Penalty Sponge Layers (PSL) for hyperbolic systems. General formulation, well-posedness and stability

    Basset, Sihem | Benkamra, Zohra | Tlemcani, Mounir

    Journal of Computational Physics, Vol. 510 (2024), Iss. P.113087

    https://doi.org/10.1016/j.jcp.2024.113087 [Citations: 0]
  4. Transparent boundary condition for simulating rogue wave solutions in the nonlinear Schrödinger equation

    Zheng, Chenxi | Tang, Shaoqiang

    Physical Review E, Vol. 106 (2022), Iss. 5

    https://doi.org/10.1103/PhysRevE.106.055302 [Citations: 2]
  5. Exact Non-reflecting Boundary Conditions Revisited: Well-Posedness and Stability

    Eriksson, Sofia | Nordström, Jan

    Foundations of Computational Mathematics, Vol. 17 (2017), Iss. 4 P.957

    https://doi.org/10.1007/s10208-016-9310-3 [Citations: 11]
  6. Comparison of Fast Shallow-Water Schemes on Real-World Floods

    Horváth, Zsolt | Buttinger-Kreuzhuber, Andreas | Konev, Artem | Cornel, Daniel | Komma, Jürgen | Blöschl, Günter | Noelle, Sebastian | Waser, Jürgen

    Journal of Hydraulic Engineering, Vol. 146 (2020), Iss. 1

    https://doi.org/10.1061/(ASCE)HY.1943-7900.0001657 [Citations: 12]
  7. Transparent nonlinear networks

    Yusupov, J. R. | Sabirov, K. K. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 100 (2019), Iss. 3

    https://doi.org/10.1103/PhysRevE.100.032204 [Citations: 16]
  8. On transparent vertex boundary conditions for quantum graphs

    Lavrukhine, A. A. | Popov, A. I. | Popov, I. Y.

    Indian Journal of Physics, Vol. 97 (2023), Iss. 7 P.2095

    https://doi.org/10.1007/s12648-022-02558-y [Citations: 0]
  9. A stable implementation measure of multi-transmitting formula in the numerical simulation of wave motion

    Su, Jie | Zhou, Zhenghua | Li, Yuandong | Hao, Bing | Dong, Qing | Li, Xiaojun | Khitab, Anwar

    PLOS ONE, Vol. 15 (2020), Iss. 12 P.e0243979

    https://doi.org/10.1371/journal.pone.0243979 [Citations: 3]
  10. Concept for a one-dimensional discrete artificial boundary condition for the lattice Boltzmann method

    Heubes, Daniel | Bartel, Andreas | Ehrhardt, Matthias

    Computers & Mathematics with Applications, Vol. 70 (2015), Iss. 10 P.2316

    https://doi.org/10.1016/j.camwa.2015.08.030 [Citations: 1]
  11. Ghost solutions with centered schemes for one-dimensional transport equations with Neumann boundary conditions

    Inglard, Mélanie | Lagoutière, Frédéric | Rugh, Hans Henrik

    Annales de la Faculté des sciences de Toulouse : Mathématiques, Vol. 29 (2020), Iss. 4 P.927

    https://doi.org/10.5802/afst.1650 [Citations: 0]
  12. Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis

    Coulombel, Jean-François

    Annales de la Faculté des sciences de Toulouse : Mathématiques, Vol. 28 (2019), Iss. 2 P.259

    https://doi.org/10.5802/afst.1600 [Citations: 3]
  13. Artificial boundary method for the Zakharov-Rubenchik equations

    Li, Hongwei | Zhang, Xiangyu

    Numerical Algorithms, Vol. 97 (2024), Iss. 3 P.1017

    https://doi.org/10.1007/s11075-023-01739-y [Citations: 0]
  14. Characteristic boundary conditions in the lattice Boltzmann method for fluid and gas dynamics

    Heubes, Daniel | Bartel, Andreas | Ehrhardt, Matthias

    Journal of Computational and Applied Mathematics, Vol. 262 (2014), Iss. P.51

    https://doi.org/10.1016/j.cam.2013.09.019 [Citations: 26]
  15. On the stability of totally upwind schemes for the hyperbolic initial boundary value problem

    Boutin, Benjamin | Le Barbenchon, Pierre | Seguin, Nicolas

    IMA Journal of Numerical Analysis, Vol. 44 (2024), Iss. 2 P.1211

    https://doi.org/10.1093/imanum/drad040 [Citations: 1]
  16. Micro-Differential Boundary Conditions Modelling the Absorption of Acoustic Waves by 2D Arbitrarily-Shaped Convex Surfaces

    Barucq, Hélène | Diaz, Julien | Duprat, Véronique

    Communications in Computational Physics, Vol. 11 (2012), Iss. 2 P.674

    https://doi.org/10.4208/cicp.311209.260411s [Citations: 8]
  17. Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures

    Yusupov, J. R. | Sabirov, K. K. | Asadov, Q. U. | Ehrhardt, M. | Matrasulov, D. U.

    Physical Review E, Vol. 101 (2020), Iss. 6

    https://doi.org/10.1103/PhysRevE.101.062208 [Citations: 11]