Preconditioners for Incompressible Navier-Stokes Solvers

Year:    2010

Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 245–275

Abstract

In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method. It is shown that block preconditioners form an excellent approach for the solution, however, if the grids are not to fine preconditioning, a Saddle point ILU matrix (SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated. In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2010.33.1

Numerical Mathematics: Theory, Methods and Applications, Vol. 3 (2010), Iss. 3 : pp. 245–275

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:    Navier-Stokes equations finite element method block preconditioners SIMPLE-type schemes iterative methods incompressible fluids.

  1. Personalized Computational Hemodynamics

    Bibliography

    2020

    https://doi.org/10.1016/B978-0-12-815653-7.16001-4 [Citations: 0]
  2. An assessment of some solvers for saddle point problems emerging from the incompressible Navier–Stokes equations

    Ahmed, Naveed | Bartsch, Clemens | John, Volker | Wilbrandt, Ulrich

    Computer Methods in Applied Mechanics and Engineering, Vol. 331 (2018), Iss. P.492

    https://doi.org/10.1016/j.cma.2017.12.004 [Citations: 10]
  3. A new numerical method for solution of boiling flow using combination of SIMPLE and Jacobian-free Newton-Krylov algorithms

    Hajizadeh, A. | Kazeminejad, H. | Talebi, S.

    Progress in Nuclear Energy, Vol. 95 (2017), Iss. P.48

    https://doi.org/10.1016/j.pnucene.2016.11.005 [Citations: 11]
  4. A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier–Stokes equations

    Horníková, Hana | Vuik, Cornelis | Egermaier, Jiří

    International Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 6 P.1788

    https://doi.org/10.1002/fld.4952 [Citations: 4]
  5. Scheduled relaxation Jacobi method as preconditioner of Krylov subspace techniques for large-scale Poisson problems

    Maity, Ankita | Singh, Krishna Mohan

    Numerical Heat Transfer, Part B: Fundamentals, Vol. 77 (2020), Iss. 2 P.152

    https://doi.org/10.1080/10407790.2019.1690875 [Citations: 1]
  6. Mathematical model to analyze the flow and heat transfer problem in U-shaped geothermal exchangers

    Egidi, Nadaniela | Giacomini, Josephin | Maponi, Pierluigi

    Applied Mathematical Modelling, Vol. 61 (2018), Iss. P.83

    https://doi.org/10.1016/j.apm.2018.03.024 [Citations: 20]
  7. ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier--Stokes Equations

    Konshin, Igor N. | Olshanskii, Maxim A. | Vassilevski, Yuri V.

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 5 P.A2171

    https://doi.org/10.1137/15M1012311 [Citations: 19]
  8. Block-preconditioners for the incompressible Navier–Stokes equations discretized by a finite volume method

    He, Xin | Vuik, Cornelis | Klaij, Christiaan

    Journal of Numerical Mathematics, Vol. 25 (2017), Iss. 2

    https://doi.org/10.1515/jnma-2015-0120 [Citations: 4]
  9. Isogeometric Analysis and Applications 2018

    Preconditioning for Linear Systems Arising from IgA Discretized Incompressible Navier–Stokes Equations

    Horníková, Hana | Vuik, Cornelis

    2021

    https://doi.org/10.1007/978-3-030-49836-8_5 [Citations: 0]
  10. Recycling augmented Lagrangian preconditioner in an incompressible fluid solver

    Olshanskii, Maxim A. | Zhiliakov, Alexander

    Numerical Linear Algebra with Applications, Vol. 29 (2022), Iss. 2

    https://doi.org/10.1002/nla.2415 [Citations: 2]
  11. Combining the Augmented Lagrangian Preconditioner with the Simple Schur Complement Approximation

    He, Xin | Vuik, Cornelis | Klaij, Christiaan M.

    SIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 3 P.A1362

    https://doi.org/10.1137/17M1144775 [Citations: 6]
  12. Computational Science – ICCS 2020

    A Block Preconditioner for Scalable Large Scale Finite Element Incompressible Flow Simulations

    Goik, Damian | Banaś, Krzysztof

    2020

    https://doi.org/10.1007/978-3-030-50420-5_15 [Citations: 0]
  13. Hyper-reduced order models for parametrized unsteady Navier-Stokes equations on domains with variable shape

    Santo, Niccolò Dal | Manzoni, Andrea

    Advances in Computational Mathematics, Vol. 45 (2019), Iss. 5-6 P.2463

    https://doi.org/10.1007/s10444-019-09722-9 [Citations: 13]
  14. Inexact matrix exponential preconditioner for implicitly restarted Arnoldi method in fluid dynamics stability problems for parallel heterogeneous architecture

    Evstigneev, Nikolay M.

    Journal of Physics: Conference Series, Vol. 1141 (2018), Iss. P.012121

    https://doi.org/10.1088/1742-6596/1141/1/012121 [Citations: 2]
  15. Comparison of Some Preconditioners for the Incompressible Navier-Stokes Equations

    He, X. | Vuik, C.

    Numerical Mathematics: Theory, Methods and Applications, Vol. 9 (2016), Iss. 2 P.239

    https://doi.org/10.4208/nmtma.2016.m1422 [Citations: 3]
  16. Efficient and robust Schur complement approximations in the augmented Lagrangian preconditioner for the incompressible laminar flows

    He, Xin | Vuik, Cornelis

    Journal of Computational Physics, Vol. 408 (2020), Iss. P.109286

    https://doi.org/10.1016/j.jcp.2020.109286 [Citations: 2]
  17. On parallel pre‐conditioners for pressure Poisson equation in LES of complex geometry flows

    Singh, K. M. | Avital, E. J. | Williams, J. J. R. | Ji, C. | Bai, X. | Munjiza, A.

    International Journal for Numerical Methods in Fluids, Vol. 83 (2017), Iss. 5 P.446

    https://doi.org/10.1002/fld.4277 [Citations: 18]