Error Estimate of the Fourier Collocation Method for the Benjamin-Ono Equation

Error Estimate of the Fourier Collocation Method for the Benjamin-Ono Equation

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 3 : pp. 341–352

Abstract

In this paper, the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed. Stability of the semi-discrete scheme is proved and error estimate in $H^{1/2}$-norm is obtained.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m88037

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 3 : pp. 341–352

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Fourier collocation Benjamin-Ono equation error estimate.

  1. A second order operator splitting numerical scheme for the “good” Boussinesq equation

    Zhang, Cheng | Wang, Hui | Huang, Jingfang | Wang, Cheng | Yue, Xingye

    Applied Numerical Mathematics, Vol. 119 (2017), Iss. P.179

    https://doi.org/10.1016/j.apnum.2017.04.006 [Citations: 53]
  2. Numerical solution of the Benjamin equation

    Dougalis, V.A. | Duran, A. | Mitsotakis, D.

    Wave Motion, Vol. 52 (2015), Iss. P.194

    https://doi.org/10.1016/j.wavemoti.2014.10.004 [Citations: 8]
  3. A Fourier pseudospectral method for the “good” Boussinesq equation with second‐order temporal accuracy

    Cheng, Kelong | Feng, Wenqiang | Gottlieb, Sigal | Wang, Cheng

    Numerical Methods for Partial Differential Equations, Vol. 31 (2015), Iss. 1 P.202

    https://doi.org/10.1002/num.21899 [Citations: 57]
  4. Dynamics of solutions in the generalized Benjamin-Ono equation: A numerical study

    Roudenko, Svetlana | Wang, Zhongming | Yang, Kai

    Journal of Computational Physics, Vol. 445 (2021), Iss. P.110570

    https://doi.org/10.1016/j.jcp.2021.110570 [Citations: 8]
  5. Comparison of three spectral methods for the Benjamin–Ono equation: Fourier pseudospectral, rational Christov functions and Gaussian radial basis functions

    Boyd, John P. | Xu, Zhengjie

    Wave Motion, Vol. 48 (2011), Iss. 8 P.702

    https://doi.org/10.1016/j.wavemoti.2011.02.004 [Citations: 16]