Adaptive Parameter Selection for Total Variation Image Deconvolution

Adaptive Parameter Selection for Total Variation Image Deconvolution

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 427–438

Abstract

In this paper, we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration. Numerical results are shown to illustrate the performance of the proposed method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9005s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 427–438

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Image restoration regularization parameter total variation.

  1. An Iterative $L_{1}$-Based Image Restoration Algorithm With an Adaptive Parameter Estimation

    Montefusco, L. B. | Lazzaro, D.

    IEEE Transactions on Image Processing, Vol. 21 (2012), Iss. 4 P.1676

    https://doi.org/10.1109/TIP.2011.2173205 [Citations: 19]
  2. Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems

    Fast Parameter Estimation in TV-Based Image Restoration

    He, Chuan | Hu, Changhua

    2023

    https://doi.org/10.1007/978-981-99-3750-9_4 [Citations: 0]
  3. Computer Vision – ACCV 2010

    Orthogonality Based Stopping Condition for Iterative Image Deconvolution Methods

    Szolgay, Dániel | Szirányi, Tamás

    2011

    https://doi.org/10.1007/978-3-642-19282-1_26 [Citations: 0]
  4. Image restoration with impulse noise based on fractional-order total variation and framelet transform

    Parvaz, Reza

    Signal, Image and Video Processing, Vol. 17 (2023), Iss. 5 P.2455

    https://doi.org/10.1007/s11760-022-02462-2 [Citations: 2]
  5. Parameter identification techniques applied to an environmental pollution model

    Wang, Yuepeng | Cheng, Yue | Michael Navon, I. | Guan, Yuanhong

    Journal of Industrial & Management Optimization, Vol. 14 (2018), Iss. 2 P.817

    https://doi.org/10.3934/jimo.2017077 [Citations: 5]
  6. Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation

    HE, Chuan | HU, Chang-Hua | ZHANG, Wei | SHI, Biao

    Acta Automatica Sinica, Vol. 40 (2014), Iss. 8 P.1804

    https://doi.org/10.1016/S1874-1029(14)60019-7 [Citations: 7]
  7. Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems

    Introduction

    He, Chuan | Hu, Changhua

    2023

    https://doi.org/10.1007/978-981-99-3750-9_1 [Citations: 0]
  8. Constrained and unconstrained deep image prior optimization models with automatic regularization

    Cascarano, Pasquale | Franchini, Giorgia | Kobler, Erich | Porta, Federica | Sebastiani, Andrea

    Computational Optimization and Applications, Vol. 84 (2023), Iss. 1 P.125

    https://doi.org/10.1007/s10589-022-00392-w [Citations: 8]
  9. Multi-parameter acoustic imaging of uniform objects in inhomogeneous soft tissue

    Guven, H. | Miller, Eric | Cleveland, Robin

    IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 59 (2012), Iss. 8 P.1700

    https://doi.org/10.1109/TUFFC.2012.2375 [Citations: 7]
  10. Rosette Trajectories for Fast MRI Based on an Adaptive Reconstruction Method

    Xu, Wen | Yang, Xiaomei | Liu, Kai | Tian, Qiaoyu | Xu, Jin

    IEEE Access, Vol. 9 (2021), Iss. P.35164

    https://doi.org/10.1109/ACCESS.2021.3062020 [Citations: 1]
  11. Parameter estimation for L<inf>P</inf> regularized image deconvolution

    Zhou, Xu | Zhou, Fugen | Bai, Xiangzhi

    2015 IEEE International Conference on Image Processing (ICIP), (2015), P.4892

    https://doi.org/10.1109/ICIP.2015.7351737 [Citations: 0]
  12. A Fast Adaptive Parameter Estimation for Total Variation Image Restoration

    He, Chuan | Hu, Changhua | Zhang, Wei | Shi, Biao

    IEEE Transactions on Image Processing, Vol. 23 (2014), Iss. 12 P.4954

    https://doi.org/10.1109/TIP.2014.2360133 [Citations: 56]
  13. A signal recovery algorithm based on linear programming

    Zhang, Jiangli

    2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), (2020), P.246

    https://doi.org/10.1109/ISPDS51347.2020.00058 [Citations: 0]
  14. Weighted total generalized variation for compressive sensing reconstruction

    Wang, Si | Guo, Weihong | Huang, Ting-Zhu

    2015 International Conference on Sampling Theory and Applications (SampTA), (2015), P.244

    https://doi.org/10.1109/SAMPTA.2015.7148889 [Citations: 1]
  15. Adaptive shearlet-regularized image deblurring via alternating direction method

    He, Chuan | Hu, Chang-Hua | Zhang, Wei

    2014 IEEE International Conference on Multimedia and Expo (ICME), (2014), P.1

    https://doi.org/10.1109/ICME.2014.6890184 [Citations: 7]
  16. An adaptive total variation regularization method for electrical resistance tomography

    Xu, Yanbin | Song, Xizi | Dong, Feng | Wang, Huaxiang

    2013 IEEE International Conference on Imaging Systems and Techniques (IST), (2013), P.127

    https://doi.org/10.1109/IST.2013.6729676 [Citations: 4]
  17. Parametric blind deconvolution for passive millimeter wave images with framelet regularization

    Fang, Houzhang | Yan, Luxin

    Optik, Vol. 125 (2014), Iss. 3 P.1454

    https://doi.org/10.1016/j.ijleo.2013.09.010 [Citations: 10]