Year: 2009
Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 427–438
Abstract
In this paper, we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration. Numerical results are shown to illustrate the performance of the proposed method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2009.m9005s
Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 427–438
Published online: 2009-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: Image restoration regularization parameter total variation.
-
An Iterative $L_{1}$-Based Image Restoration Algorithm With an Adaptive Parameter Estimation
Montefusco, L. B. | Lazzaro, D.IEEE Transactions on Image Processing, Vol. 21 (2012), Iss. 4 P.1676
https://doi.org/10.1109/TIP.2011.2173205 [Citations: 19] -
Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems
Fast Parameter Estimation in TV-Based Image Restoration
He, Chuan | Hu, Changhua2023
https://doi.org/10.1007/978-981-99-3750-9_4 [Citations: 0] -
Computer Vision – ACCV 2010
Orthogonality Based Stopping Condition for Iterative Image Deconvolution Methods
Szolgay, Dániel | Szirányi, Tamás2011
https://doi.org/10.1007/978-3-642-19282-1_26 [Citations: 0] -
Image restoration with impulse noise based on fractional-order total variation and framelet transform
Parvaz, Reza
Signal, Image and Video Processing, Vol. 17 (2023), Iss. 5 P.2455
https://doi.org/10.1007/s11760-022-02462-2 [Citations: 2] -
Parameter identification techniques applied to an environmental pollution model
Wang, Yuepeng | Cheng, Yue | Michael Navon, I. | Guan, YuanhongJournal of Industrial & Management Optimization, Vol. 14 (2018), Iss. 2 P.817
https://doi.org/10.3934/jimo.2017077 [Citations: 5] -
Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation
HE, Chuan | HU, Chang-Hua | ZHANG, Wei | SHI, BiaoActa Automatica Sinica, Vol. 40 (2014), Iss. 8 P.1804
https://doi.org/10.1016/S1874-1029(14)60019-7 [Citations: 7] -
Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems
Introduction
He, Chuan | Hu, Changhua2023
https://doi.org/10.1007/978-981-99-3750-9_1 [Citations: 0] -
Constrained and unconstrained deep image prior optimization models with automatic regularization
Cascarano, Pasquale | Franchini, Giorgia | Kobler, Erich | Porta, Federica | Sebastiani, AndreaComputational Optimization and Applications, Vol. 84 (2023), Iss. 1 P.125
https://doi.org/10.1007/s10589-022-00392-w [Citations: 8] -
Multi-parameter acoustic imaging of uniform objects in inhomogeneous soft tissue
Guven, H. | Miller, Eric | Cleveland, RobinIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 59 (2012), Iss. 8 P.1700
https://doi.org/10.1109/TUFFC.2012.2375 [Citations: 7] -
Rosette Trajectories for Fast MRI Based on an Adaptive Reconstruction Method
Xu, Wen | Yang, Xiaomei | Liu, Kai | Tian, Qiaoyu | Xu, JinIEEE Access, Vol. 9 (2021), Iss. P.35164
https://doi.org/10.1109/ACCESS.2021.3062020 [Citations: 1] -
Parameter estimation for L<inf>P</inf> regularized image deconvolution
Zhou, Xu | Zhou, Fugen | Bai, Xiangzhi2015 IEEE International Conference on Image Processing (ICIP), (2015), P.4892
https://doi.org/10.1109/ICIP.2015.7351737 [Citations: 0] -
A Fast Adaptive Parameter Estimation for Total Variation Image Restoration
He, Chuan | Hu, Changhua | Zhang, Wei | Shi, BiaoIEEE Transactions on Image Processing, Vol. 23 (2014), Iss. 12 P.4954
https://doi.org/10.1109/TIP.2014.2360133 [Citations: 56] -
A signal recovery algorithm based on linear programming
Zhang, Jiangli
2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), (2020), P.246
https://doi.org/10.1109/ISPDS51347.2020.00058 [Citations: 0] -
Weighted total generalized variation for compressive sensing reconstruction
Wang, Si | Guo, Weihong | Huang, Ting-Zhu2015 International Conference on Sampling Theory and Applications (SampTA), (2015), P.244
https://doi.org/10.1109/SAMPTA.2015.7148889 [Citations: 1] -
Adaptive shearlet-regularized image deblurring via alternating direction method
He, Chuan | Hu, Chang-Hua | Zhang, Wei2014 IEEE International Conference on Multimedia and Expo (ICME), (2014), P.1
https://doi.org/10.1109/ICME.2014.6890184 [Citations: 7] -
An adaptive total variation regularization method for electrical resistance tomography
Xu, Yanbin | Song, Xizi | Dong, Feng | Wang, Huaxiang2013 IEEE International Conference on Imaging Systems and Techniques (IST), (2013), P.127
https://doi.org/10.1109/IST.2013.6729676 [Citations: 4] -
Parametric blind deconvolution for passive millimeter wave images with framelet regularization
Fang, Houzhang | Yan, LuxinOptik, Vol. 125 (2014), Iss. 3 P.1454
https://doi.org/10.1016/j.ijleo.2013.09.010 [Citations: 10]