Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

Fast Revealing of Mode Ranks of Tensor in Canonical Form

Fast Revealing of Mode Ranks of Tensor in Canonical Form

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444

Abstract

Considering the problem of mode ranks revealing of $d$-dimensional array (tensor) given in canonical form, we propose fast algorithm based on cross approximation of Gram matrices of unfoldings.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9006s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    Multidimensional array canonical decomposition Tucker approximation fast recompression.

  1. Computation of extreme eigenvalues in higher dimensions using block tensor train format

    Dolgov, S.V. | Khoromskij, B.N. | Oseledets, I.V. | Savostyanov, D.V.

    Computer Physics Communications, Vol. 185 (2014), Iss. 4 P.1207

    https://doi.org/10.1016/j.cpc.2013.12.017 [Citations: 67]
  2. Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis

    Khoromskaia, V. | Khoromskij, B. N. | Schneider, R.

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 2 P.A987

    https://doi.org/10.1137/120884067 [Citations: 24]
  3. Parallel cross interpolation for high-precision calculation of high-dimensional integrals

    Dolgov, Sergey | Savostyanov, Dmitry

    Computer Physics Communications, Vol. 246 (2020), Iss. P.106869

    https://doi.org/10.1016/j.cpc.2019.106869 [Citations: 31]
  4. Fast truncation of mode ranks for bilinear tensor operations

    Savostyanov, D. V. | Tyrtyshnikov, E. E. | Zamarashkin, N. L.

    Numerical Linear Algebra with Applications, Vol. 19 (2012), Iss. 1 P.103

    https://doi.org/10.1002/nla.765 [Citations: 7]
  5. Superfast Fourier Transform Using QTT Approximation

    Dolgov, Sergey | Khoromskij, Boris | Savostyanov, Dmitry

    Journal of Fourier Analysis and Applications, Vol. 18 (2012), Iss. 5 P.915

    https://doi.org/10.1007/s00041-012-9227-4 [Citations: 44]
  6. Exploiting Efficient Representations in Large-Scale Tensor Decompositions

    Vervliet, Nico | Debals, Otto | De Lathauwer, Lieven

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 2 P.A789

    https://doi.org/10.1137/17M1152371 [Citations: 18]
  7. Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case

    Goreinov, S. A. | Oseledets, I. V. | Savostyanov, D. V.

    SIAM Journal on Scientific Computing, Vol. 34 (2012), Iss. 1 P.A1

    https://doi.org/10.1137/100792056 [Citations: 15]
  8. Exact NMR simulation of protein-size spin systems using tensor train formalism

    Savostyanov, D. V. | Dolgov, S. V. | Werner, J. M. | Kuprov, Ilya

    Physical Review B, Vol. 90 (2014), Iss. 8

    https://doi.org/10.1103/PhysRevB.90.085139 [Citations: 24]
  9. Challenging the Curse of Dimensionality in Multidimensional Numerical Integration by Using a Low-Rank Tensor-Train Format

    Alexandrov, Boian | Manzini, Gianmarco | Skau, Erik W. | Truong, Phan Minh Duc | Vuchov, Radoslav G.

    Mathematics, Vol. 11 (2023), Iss. 3 P.534

    https://doi.org/10.3390/math11030534 [Citations: 3]