Fast Revealing of Mode Ranks of Tensor in Canonical Form

Fast Revealing of Mode Ranks of Tensor in Canonical Form

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444

Abstract

Considering the problem of mode ranks revealing of $d$-dimensional array (tensor) given in canonical form, we propose fast algorithm based on cross approximation of Gram matrices of unfoldings.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9006s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    Multidimensional array canonical decomposition Tucker approximation fast recompression.

  1. Computation of extreme eigenvalues in higher dimensions using block tensor train format

    Dolgov, S.V. | Khoromskij, B.N. | Oseledets, I.V. | Savostyanov, D.V.

    Computer Physics Communications, Vol. 185 (2014), Iss. 4 P.1207

    https://doi.org/10.1016/j.cpc.2013.12.017 [Citations: 66]
  2. Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis

    Khoromskaia, V. | Khoromskij, B. N. | Schneider, R.

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 2 P.A987

    https://doi.org/10.1137/120884067 [Citations: 24]
  3. Parallel cross interpolation for high-precision calculation of high-dimensional integrals

    Dolgov, Sergey | Savostyanov, Dmitry

    Computer Physics Communications, Vol. 246 (2020), Iss. P.106869

    https://doi.org/10.1016/j.cpc.2019.106869 [Citations: 26]
  4. Fast truncation of mode ranks for bilinear tensor operations

    Savostyanov, D. V. | Tyrtyshnikov, E. E. | Zamarashkin, N. L.

    Numerical Linear Algebra with Applications, Vol. 19 (2012), Iss. 1 P.103

    https://doi.org/10.1002/nla.765 [Citations: 7]
  5. Superfast Fourier Transform Using QTT Approximation

    Dolgov, Sergey | Khoromskij, Boris | Savostyanov, Dmitry

    Journal of Fourier Analysis and Applications, Vol. 18 (2012), Iss. 5 P.915

    https://doi.org/10.1007/s00041-012-9227-4 [Citations: 42]
  6. Exploiting Efficient Representations in Large-Scale Tensor Decompositions

    Vervliet, Nico | Debals, Otto | De Lathauwer, Lieven

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 2 P.A789

    https://doi.org/10.1137/17M1152371 [Citations: 15]
  7. Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case

    Goreinov, S. A. | Oseledets, I. V. | Savostyanov, D. V.

    SIAM Journal on Scientific Computing, Vol. 34 (2012), Iss. 1 P.A1

    https://doi.org/10.1137/100792056 [Citations: 14]
  8. Exact NMR simulation of protein-size spin systems using tensor train formalism

    Savostyanov, D. V. | Dolgov, S. V. | Werner, J. M. | Kuprov, Ilya

    Physical Review B, Vol. 90 (2014), Iss. 8

    https://doi.org/10.1103/PhysRevB.90.085139 [Citations: 23]
  9. Challenging the Curse of Dimensionality in Multidimensional Numerical Integration by Using a Low-Rank Tensor-Train Format

    Alexandrov, Boian | Manzini, Gianmarco | Skau, Erik W. | Truong, Phan Minh Duc | Vuchov, Radoslav G.

    Mathematics, Vol. 11 (2023), Iss. 3 P.534

    https://doi.org/10.3390/math11030534 [Citations: 3]