Year: 2009
Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444
Abstract
Considering the problem of mode ranks revealing of $d$-dimensional array (tensor) given in canonical form, we propose fast algorithm based on cross approximation of Gram matrices of unfoldings.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/nmtma.2009.m9006s
Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 439–444
Published online: 2009-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 6
Keywords: Multidimensional array canonical decomposition Tucker approximation fast recompression.
-
Computation of extreme eigenvalues in higher dimensions using block tensor train format
Dolgov, S.V. | Khoromskij, B.N. | Oseledets, I.V. | Savostyanov, D.V.Computer Physics Communications, Vol. 185 (2014), Iss. 4 P.1207
https://doi.org/10.1016/j.cpc.2013.12.017 [Citations: 66] -
Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis
Khoromskaia, V. | Khoromskij, B. N. | Schneider, R.SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 2 P.A987
https://doi.org/10.1137/120884067 [Citations: 24] -
Parallel cross interpolation for high-precision calculation of high-dimensional integrals
Dolgov, Sergey | Savostyanov, DmitryComputer Physics Communications, Vol. 246 (2020), Iss. P.106869
https://doi.org/10.1016/j.cpc.2019.106869 [Citations: 26] -
Fast truncation of mode ranks for bilinear tensor operations
Savostyanov, D. V. | Tyrtyshnikov, E. E. | Zamarashkin, N. L.Numerical Linear Algebra with Applications, Vol. 19 (2012), Iss. 1 P.103
https://doi.org/10.1002/nla.765 [Citations: 7] -
Superfast Fourier Transform Using QTT Approximation
Dolgov, Sergey | Khoromskij, Boris | Savostyanov, DmitryJournal of Fourier Analysis and Applications, Vol. 18 (2012), Iss. 5 P.915
https://doi.org/10.1007/s00041-012-9227-4 [Citations: 42] -
Exploiting Efficient Representations in Large-Scale Tensor Decompositions
Vervliet, Nico | Debals, Otto | De Lathauwer, LievenSIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 2 P.A789
https://doi.org/10.1137/17M1152371 [Citations: 15] -
Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case
Goreinov, S. A. | Oseledets, I. V. | Savostyanov, D. V.SIAM Journal on Scientific Computing, Vol. 34 (2012), Iss. 1 P.A1
https://doi.org/10.1137/100792056 [Citations: 14] -
Exact NMR simulation of protein-size spin systems using tensor train formalism
Savostyanov, D. V. | Dolgov, S. V. | Werner, J. M. | Kuprov, IlyaPhysical Review B, Vol. 90 (2014), Iss. 8
https://doi.org/10.1103/PhysRevB.90.085139 [Citations: 23] -
Challenging the Curse of Dimensionality in Multidimensional Numerical Integration by Using a Low-Rank Tensor-Train Format
Alexandrov, Boian | Manzini, Gianmarco | Skau, Erik W. | Truong, Phan Minh Duc | Vuchov, Radoslav G.Mathematics, Vol. 11 (2023), Iss. 3 P.534
https://doi.org/10.3390/math11030534 [Citations: 3]