A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems

A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 469–484

Abstract

We study preconditioning techniques used in conjunction with the conjugate gradient method for solving multi-length-scale symmetric positive definite linear systems originating from the quantum Monte Carlo simulation of electron interaction of correlated materials. Existing preconditioning techniques are not designed to be adaptive to varying numerical properties of the multi-length-scale systems. In this paper, we propose a hybrid incomplete Cholesky (HIC) preconditioner and demonstrate its adaptivity to the multi-length-scale systems. In addition, we propose an extension of the compressed sparse column with row access (CSCR) sparse matrix storage format to efficiently accommodate the data access pattern to compute the HIC preconditioner. We show that for moderately correlated materials, the HIC preconditioner achieves the optimal linear scaling of the simulation. The development of a linear-scaling preconditioner for strongly correlated materials remains an open topic.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9008s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 469–484

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Preconditioning multi-length-scale incomplete Cholesky factorization quantum Monte Carlo simulation.

  1. MPI+OpenMP parallel implementation of conjugate gradient method with preconditioner of block partial inverse triangular decomposition of IC2S and IC1

    Milyukova, Olga Yurievna

    Keldysh Institute Preprints, Vol. (2021), Iss. 48 P.1

    https://doi.org/10.20948/prepr-2021-48 [Citations: 3]
  2. Parallelizing the Hamiltonian Computation in DQMC Simulations: Checkerboard Method for Sparse Matrix Exponentials on Multicore and GPU

    Lee, Che-Rung | Chen, Zhi-Hung | Kao, Quey-Liang

    2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, (2012), P.1889

    https://doi.org/10.1109/IPDPSW.2012.233 [Citations: 2]
  3. MPI+OpenMP реализация метода сопряженных градиентов с факторизованными неявными предобусловливателями

    Милюкова, Ольга Юрьевна | Milyukova, Olga Yu

    Математическое моделирование, Vol. 33 (2021), Iss. 10 P.19

    https://doi.org/10.20948/mm-2021-10-02 [Citations: 5]
  4. On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization

    Scott, Jennifer | Tůma, Miroslav

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 2 P.A609

    https://doi.org/10.1137/130917582 [Citations: 22]
  5. MPI+OpenMP Implementation of the Conjugated Gradient Method with Factorized Implicit Preconditioners

    Milyukova, O. Yu.

    Mathematical Models and Computer Simulations, Vol. 14 (2022), Iss. 3 P.367

    https://doi.org/10.1134/S2070048222030103 [Citations: 1]
  6. On a Parallel Version of a Second-Order Incomplete Triangular Factorization Method

    Milyukova, O. Yu.

    Mathematical Models and Computer Simulations, Vol. 11 (2019), Iss. 2 P.309

    https://doi.org/10.1134/S207004821902011X [Citations: 0]
  7. Preconditioned Iterative Methods for Solving Linear Least Squares Problems

    Bru, Rafael | Marín, José | Mas, José | Tůma, Miroslav

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 4 P.A2002

    https://doi.org/10.1137/130931588 [Citations: 17]
  8. HSL_MI28

    Scott, Jennifer | Tůma, Miroslav

    ACM Transactions on Mathematical Software, Vol. 40 (2014), Iss. 4 P.1

    https://doi.org/10.1145/2617555 [Citations: 21]