Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery

Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 485–508

Abstract

A convex variational formulation is proposed to solve multicomponent signal processing problems in Hilbert spaces. The cost function consists of a separable term, in which each component is modeled through its own potential, and of a coupling term, in which constraints on linear transformations of the components are penalized with smooth functionals. An algorithm with guaranteed weak convergence to a solution to the problem is provided. Various multicomponent signal decomposition and recovery applications are discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9009s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 485–508

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Convex optimization denoising image restoration proximal algorithm signal decomposition signal recovery.

  1. Fixed Points of Averages of Resolvents: Geometry and Algorithms

    Bauschke, Heinz H. | Wang, Xianfu | Wylie, Calvin J. S.

    SIAM Journal on Optimization, Vol. 22 (2012), Iss. 1 P.24

    https://doi.org/10.1137/110823778 [Citations: 3]
  2. Proximal Algorithms for Multicomponent Image Recovery Problems

    Briceño-Arias, L. M. | Combettes, P. L. | Pesquet, J.-C. | Pustelnik, N.

    Journal of Mathematical Imaging and Vision, Vol. 41 (2011), Iss. 1-2 P.3

    https://doi.org/10.1007/s10851-010-0243-1 [Citations: 43]
  3. A Splitting Algorithm for System of Composite Monotone Inclusions

    Dũng, Dinh | Vũ, Bằng Công

    Vietnam Journal of Mathematics, Vol. 43 (2015), Iss. 2 P.323

    https://doi.org/10.1007/s10013-015-0121-7 [Citations: 6]
  4. Dualization of Signal Recovery Problems

    Combettes, Patrick L. | Dũng, Đinh | Vũ, Bằng Công

    Set-Valued and Variational Analysis, Vol. 18 (2010), Iss. 3-4 P.373

    https://doi.org/10.1007/s11228-010-0147-7 [Citations: 70]
  5. Inverse problems with poisson noise: Primal and primal-dual splitting

    Dupe, F.-X. | Fadili, M.J. | Starch, J.-L.

    2011 18th IEEE International Conference on Image Processing, (2011), P.1901

    https://doi.org/10.1109/ICIP.2011.6115841 [Citations: 3]
  6. A Perturbation Framework for Convex Minimization and Monotone Inclusion Problems with Nonlinear Compositions

    Briceño-Arias, Luis M. | Combettes, Patrick L.

    Mathematics of Operations Research, Vol. 49 (2024), Iss. 3 P.1890

    https://doi.org/10.1287/moor.2022.0180 [Citations: 0]
  7. Reconstruction of functions from prescribed proximal points

    Combettes, Patrick L. | Woodstock, Zev C.

    Journal of Approximation Theory, Vol. 268 (2021), Iss. P.105606

    https://doi.org/10.1016/j.jat.2021.105606 [Citations: 5]
  8. A Splitting Algorithm for Coupled System of Primal–Dual Monotone Inclusions

    Vũ, Bằng Công

    Journal of Optimization Theory and Applications, Vol. 164 (2015), Iss. 3 P.993

    https://doi.org/10.1007/s10957-014-0526-6 [Citations: 10]
  9. Cell Detection by Functional Inverse Diffusion and Non-negative Group Sparsity—Part II: Proximal Optimization and Performance Evaluation

    del Aguila Pla, Pol | Jalden, Joakim

    IEEE Transactions on Signal Processing, Vol. 66 (2018), Iss. 20 P.5422

    https://doi.org/10.1109/TSP.2018.2868256 [Citations: 10]
  10. Linear Convergence of Stochastic Block-Coordinate Fixed Point Algorithms

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    2018 26th European Signal Processing Conference (EUSIPCO), (2018), P.742

    https://doi.org/10.23919/EUSIPCO.2018.8552941 [Citations: 2]
  11. Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions

    Briceño-Arias, Luis M.

    Optimization, Vol. 64 (2015), Iss. 5 P.1239

    https://doi.org/10.1080/02331934.2013.855210 [Citations: 50]
  12. Monotone operator theory in convex optimization

    Combettes, Patrick L.

    Mathematical Programming, Vol. 170 (2018), Iss. 1 P.177

    https://doi.org/10.1007/s10107-018-1303-3 [Citations: 34]
  13. Proximity Operators of Perspective Functions with Nonlinear Scaling

    Briceño-Arias, Luis M. | Combettes, Patrick L. | Silva, Francisco J.

    SIAM Journal on Optimization, Vol. 34 (2024), Iss. 4 P.3212

    https://doi.org/10.1137/23M1583430 [Citations: 0]
  14. Fixed-Point Algorithms for Inverse Problems in Science and Engineering

    Proximal Splitting Methods in Signal Processing

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    2011

    https://doi.org/10.1007/978-1-4419-9569-8_10 [Citations: 1173]
  15. A Variational Inequality Model for the Construction of Signals from Inconsistent Nonlinear Equations

    Combettes, Patrick L. | Woodstock, Zev C.

    SIAM Journal on Imaging Sciences, Vol. 15 (2022), Iss. 1 P.84

    https://doi.org/10.1137/21M1420368 [Citations: 7]
  16. Fixed Point Strategies in Data Science

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    IEEE Transactions on Signal Processing, Vol. 69 (2021), Iss. P.3878

    https://doi.org/10.1109/TSP.2021.3069677 [Citations: 58]
  17. Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications

    Combettes, Patrick L.

    SIAM Journal on Optimization, Vol. 23 (2013), Iss. 4 P.2420

    https://doi.org/10.1137/130904160 [Citations: 45]
  18. Multivariate Monotone Inclusions in Saddle Form

    Bùi, Minh N. | Combettes, Patrick L.

    Mathematics of Operations Research, Vol. 47 (2022), Iss. 2 P.1082

    https://doi.org/10.1287/moor.2021.1161 [Citations: 10]
  19. Proximal method for geometry and texture image decomposition

    Briceno-Arias, L. M. | Combettes, P. L. | Pesquet, J.-C. | Pustelnik, N.

    2010 IEEE International Conference on Image Processing, (2010), P.2721

    https://doi.org/10.1109/ICIP.2010.5653670 [Citations: 2]
  20. Proximal Activation of Smooth Functions in Splitting Algorithms for Convex Image Recovery

    Combettes, Patrick L. | Glaudin, Lilian E.

    SIAM Journal on Imaging Sciences, Vol. 12 (2019), Iss. 4 P.1905

    https://doi.org/10.1137/18M1224763 [Citations: 16]
  21. Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    SIAM Journal on Optimization, Vol. 25 (2015), Iss. 2 P.1221

    https://doi.org/10.1137/140971233 [Citations: 118]
  22. A Generalized Forward-Backward Splitting

    Raguet, Hugo | Fadili, Jalal | Peyré, Gabriel

    SIAM Journal on Imaging Sciences, Vol. 6 (2013), Iss. 3 P.1199

    https://doi.org/10.1137/120872802 [Citations: 206]
  23. Fully Proximal Splitting Algorithms In Image Recovery

    Combettes, Patrick L. | Glaudin, Lilian E.

    2019 27th European Signal Processing Conference (EUSIPCO), (2019), P.1

    https://doi.org/10.23919/EUSIPCO.2019.8903039 [Citations: 2]
  24. Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of their Kuhn--Tucker Set

    Alotaibi, Abdullah | Combettes, Patrick L. | Shahzad, Naseer

    SIAM Journal on Optimization, Vol. 24 (2014), Iss. 4 P.2076

    https://doi.org/10.1137/130950616 [Citations: 36]