Journals
Resources
About Us
Open Access

Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery

Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery

Year:    2009

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 485–508

Abstract

A convex variational formulation is proposed to solve multicomponent signal processing problems in Hilbert spaces. The cost function consists of a separable term, in which each component is modeled through its own potential, and of a coupling term, in which constraints on linear transformations of the components are penalized with smooth functionals. An algorithm with guaranteed weak convergence to a solution to the problem is provided. Various multicomponent signal decomposition and recovery applications are discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/nmtma.2009.m9009s

Numerical Mathematics: Theory, Methods and Applications, Vol. 2 (2009), Iss. 4 : pp. 485–508

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    24

Keywords:    Convex optimization denoising image restoration proximal algorithm signal decomposition signal recovery.

  1. Dualization of Signal Recovery Problems

    Combettes, Patrick L. | Dũng, Đinh | Vũ, Bằng Công

    Set-Valued and Variational Analysis, Vol. 18 (2010), Iss. 3-4 P.373

    https://doi.org/10.1007/s11228-010-0147-7 [Citations: 70]
  2. Cell Detection by Functional Inverse Diffusion and Non-negative Group Sparsity—Part II: Proximal Optimization and Performance Evaluation

    del Aguila Pla, Pol | Jalden, Joakim

    IEEE Transactions on Signal Processing, Vol. 66 (2018), Iss. 20 P.5422

    https://doi.org/10.1109/TSP.2018.2868256 [Citations: 10]
  3. Monotone operator theory in convex optimization

    Combettes, Patrick L.

    Mathematical Programming, Vol. 170 (2018), Iss. 1 P.177

    https://doi.org/10.1007/s10107-018-1303-3 [Citations: 37]
  4. A Variational Inequality Model for the Construction of Signals from Inconsistent Nonlinear Equations

    Combettes, Patrick L. | Woodstock, Zev C.

    SIAM Journal on Imaging Sciences, Vol. 15 (2022), Iss. 1 P.84

    https://doi.org/10.1137/21M1420368 [Citations: 7]
  5. Proximal method for geometry and texture image decomposition

    Briceno-Arias, L. M. | Combettes, P. L. | Pesquet, J.-C. | Pustelnik, N.

    2010 IEEE International Conference on Image Processing, (2010), P.2721

    https://doi.org/10.1109/ICIP.2010.5653670 [Citations: 2]
  6. A Generalized Forward-Backward Splitting

    Raguet, Hugo | Fadili, Jalal | Peyré, Gabriel

    SIAM Journal on Imaging Sciences, Vol. 6 (2013), Iss. 3 P.1199

    https://doi.org/10.1137/120872802 [Citations: 206]
  7. Fixed Points of Averages of Resolvents: Geometry and Algorithms

    Bauschke, Heinz H. | Wang, Xianfu | Wylie, Calvin J. S.

    SIAM Journal on Optimization, Vol. 22 (2012), Iss. 1 P.24

    https://doi.org/10.1137/110823778 [Citations: 3]
  8. Proximal Algorithms for Multicomponent Image Recovery Problems

    Briceño-Arias, L. M. | Combettes, P. L. | Pesquet, J.-C. | Pustelnik, N.

    Journal of Mathematical Imaging and Vision, Vol. 41 (2011), Iss. 1-2 P.3

    https://doi.org/10.1007/s10851-010-0243-1 [Citations: 44]
  9. A Splitting Algorithm for System of Composite Monotone Inclusions

    Dũng, Dinh | Vũ, Bằng Công

    Vietnam Journal of Mathematics, Vol. 43 (2015), Iss. 2 P.323

    https://doi.org/10.1007/s10013-015-0121-7 [Citations: 6]
  10. Inverse problems with poisson noise: Primal and primal-dual splitting

    Dupe, F.-X. | Fadili, M.J. | Starch, J.-L.

    2011 18th IEEE International Conference on Image Processing, (2011), P.1901

    https://doi.org/10.1109/ICIP.2011.6115841 [Citations: 3]
  11. A Perturbation Framework for Convex Minimization and Monotone Inclusion Problems with Nonlinear Compositions

    Briceño-Arias, Luis M. | Combettes, Patrick L.

    Mathematics of Operations Research, Vol. 49 (2024), Iss. 3 P.1890

    https://doi.org/10.1287/moor.2022.0180 [Citations: 0]
  12. Reconstruction of functions from prescribed proximal points

    Combettes, Patrick L. | Woodstock, Zev C.

    Journal of Approximation Theory, Vol. 268 (2021), Iss. P.105606

    https://doi.org/10.1016/j.jat.2021.105606 [Citations: 5]
  13. Forward-Primal-Dual-Half-Forward Algorithm for Splitting Four Operators

    Roldán, Fernando

    Journal of Optimization Theory and Applications, Vol. 204 (2025), Iss. 1

    https://doi.org/10.1007/s10957-024-02560-w [Citations: 0]
  14. A Splitting Algorithm for Coupled System of Primal–Dual Monotone Inclusions

    Vũ, Bằng Công

    Journal of Optimization Theory and Applications, Vol. 164 (2015), Iss. 3 P.993

    https://doi.org/10.1007/s10957-014-0526-6 [Citations: 10]
  15. Linear Convergence of Stochastic Block-Coordinate Fixed Point Algorithms

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    2018 26th European Signal Processing Conference (EUSIPCO), (2018), P.742

    https://doi.org/10.23919/EUSIPCO.2018.8552941 [Citations: 2]
  16. Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions

    Briceño-Arias, Luis M.

    Optimization, Vol. 64 (2015), Iss. 5 P.1239

    https://doi.org/10.1080/02331934.2013.855210 [Citations: 50]
  17. Proximity Operators of Perspective Functions with Nonlinear Scaling

    Briceño-Arias, Luis M. | Combettes, Patrick L. | Silva, Francisco J.

    SIAM Journal on Optimization, Vol. 34 (2024), Iss. 4 P.3212

    https://doi.org/10.1137/23M1583430 [Citations: 0]
  18. Fixed-Point Algorithms for Inverse Problems in Science and Engineering

    Proximal Splitting Methods in Signal Processing

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    2011

    https://doi.org/10.1007/978-1-4419-9569-8_10 [Citations: 1180]
  19. Fixed Point Strategies in Data Science

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    IEEE Transactions on Signal Processing, Vol. 69 (2021), Iss. P.3878

    https://doi.org/10.1109/TSP.2021.3069677 [Citations: 59]
  20. Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications

    Combettes, Patrick L.

    SIAM Journal on Optimization, Vol. 23 (2013), Iss. 4 P.2420

    https://doi.org/10.1137/130904160 [Citations: 47]
  21. Multivariate Monotone Inclusions in Saddle Form

    Bùi, Minh N. | Combettes, Patrick L.

    Mathematics of Operations Research, Vol. 47 (2022), Iss. 2 P.1082

    https://doi.org/10.1287/moor.2021.1161 [Citations: 13]
  22. Proximal Activation of Smooth Functions in Splitting Algorithms for Convex Image Recovery

    Combettes, Patrick L. | Glaudin, Lilian E.

    SIAM Journal on Imaging Sciences, Vol. 12 (2019), Iss. 4 P.1905

    https://doi.org/10.1137/18M1224763 [Citations: 16]
  23. Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping

    Combettes, Patrick L. | Pesquet, Jean-Christophe

    SIAM Journal on Optimization, Vol. 25 (2015), Iss. 2 P.1221

    https://doi.org/10.1137/140971233 [Citations: 120]
  24. Fully Proximal Splitting Algorithms In Image Recovery

    Combettes, Patrick L. | Glaudin, Lilian E.

    2019 27th European Signal Processing Conference (EUSIPCO), (2019), P.1

    https://doi.org/10.23919/EUSIPCO.2019.8903039 [Citations: 2]
  25. Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of their Kuhn--Tucker Set

    Alotaibi, Abdullah | Combettes, Patrick L. | Shahzad, Naseer

    SIAM Journal on Optimization, Vol. 24 (2014), Iss. 4 P.2076

    https://doi.org/10.1137/130950616 [Citations: 37]